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Yates (1984) using theoretical and philosophical arguments claims to have proved that 
the Fisher exact test for comparing the proportions of two binomial experiments is 
the best exact test. The present article uses objective and practical arguments to 
confront the Fisher exact test with a Bayes exact test. Using simulated samples we 
claim to have proved here the inferiority of the Fisher exact test in relation to a Bayes 
exact test. The comparison is based on the quality concept of Dawid (1982). 

KEY WORDS: Fisher exact test, Bayes exact test, stated error probabilities, actual 
error frequencies (or probabilities), estimated error frequencies. 

AMS Classification: 62F03 62A20 62Al5. 

1. INTRODUCTION 

This article is devoted to a practical confront between a Bayes exact 
test (BE test) and the Fisher exact test (FE test) for comparing the 
proportions, p and q, of two binomial experiments, X and Y, with 
sample sizes m and n, respectively. The data set may be displayed in 
the following 2 x 2 contingency table. 

- - 
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TABLE I 

Sample displayed in a 2 x 2 table 

Experiment Success Failure Sample size 
- - 

X x m-x m 
Y Y n-  Y n 

Total t M-t  M=n+m 

In the same manner, the parametric structure is displayed as: 

TABLE I1 
Parametric structure 

Experiment Success Failure 

X P 1-p O < p < l  
and 

Y 'f 1-q O < q < l  

The problem is to test H : p = q ,  the null hypothesis, against 
A:p# q, the alternative hypothesis, when m and n are considered too 
small to permit the adoption of an asymptotic method. 

The classical treatment for this problem is the Fisher exact test, 
that has received a great deal of attention through discussion papers 
about its validity. In a long article on the history and the analysis of 
these discussions, Yates (1984) shows that, under the classical point 
of view, there is no better test than the FE test. Hence, for one who 
rejects this test (Basu, 1979), the natural alternative is to look for a 
Bayesian solution. However, this is a difficult attitude to be taken by 
a classical statistician because the literature is flooded of radical 
papers rejecting one point of view in favor of the other. Hence, in 
principle, classical statisticians must reject Bayesian methods and 
Bayesians must reject classical ones. For a complete analysis of these 
two viewpoints see Kempthorne (1980a, 1980b) and Lindley (1982). 

In spite of the final conclusion on the superiority of the BE test, 
discussions on philosophical aspects are not the purpose of the 
present note. The intention here is to look at the FE test and at the 
BE test as two simple decision rules and then, objectively, to verify 
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EXACT TESTS FOR TWO PROPORTIONS 95 

which of them is the best. What is meant by a rule that is objectively 
good is explained next and follows the lines of Dawid (1982). 

A decision rule to test H against A is a binary function on the 
sample space associated with a statement, (a,P), about the actual 
values, ALFA and BETA, of the probabilities of the two kinds of 
errors. A good test must satisfy the following conditions: 

i) cx=ALFA and P=BETA. That is, the test states correctly the 
error probabilities. 

ii) For a fixed k > 0, the value of ALFA + kBETA is minimized by 
the test. Note that k establishes an order of importance 
between a and (for a technical discussion see De Groot, 
1975). 

Using a representative number of simulated samples, Section 3 
shows that the FE test, unlike the BE test, fails to follow both (i) 
and (ii). Sections 4 and 5 analyse the reasons for this failure. The 
two tests are described in the sequel. 

2. BAYES AND FISHER EXACT TESTS 

The BE test and the FE test are defined in this section in order to 
simplify the understanding of the notation considered. 

2.1 The BE test 

The Bayesian procedure considered here is like the Jeffreys' test for 
sharp hypothesis (Jeffreys, 1961). Note that H defines the set 
a, = {(p, q); O<p=q<  1}, that is, a line in the parametric space 
a=  {(p, q); 0 < p < 1,O < q < 13. Hence, Q and Q, have different 
dimensions. 

Since the objective here is to confront the two tests, only uniform 
priors (on Q, and on Q, =Q-Q,) are considered because no prior 
knowledge, as in the FE test, must be used. With these priors, the 
predictive probabilities for (x, t), the data, under H and A are, 
respectively, 
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In order to give the same importance for H and A, we consider the 
prior probabilities Pr(H) =Pr(A) =f. The Bayes factor in favor of H 
is then 

It is interesting to notice that b(x, t )  is the ratio of the likelihood 
averages on R, and on 0,. For a fixed positive constant k, the 
function test, B,, of the BE test is 

and 

The main property of this test (De Groot, 1975) is to minimize 
cc + k,!3, where a = ,f,(x, t )  and ,!3 = 1 - .fA(x, t );  the sum is over 
the critical region CB, = {(x, t );  b(x, t )  < k). Since we consider no 
preference between the two hypotheses, to minimize a+P we must 
take k = 1. 

Finally, we notice that cc and /I defined here are the averages of 
the two kinds of errors taken over no and a,, respectively. 

2.2 The FE test 

The FE test considers 8 = [p(l - q)/q(l - p)], the cross-product, as the 
parameter of interest. The marginals, m, n, t ,  and M - t ,  carry no 
information about 9 in Fisher's opinion (Fisher, 1935). Hence, in the 
FE test these marginals are considered fixed before the data collec- 
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EXACT TESTS FOR TWO PROPORTIONS 97 

tion. Consequently, the likelihood functions used by the F E  test are 

where zi is the sum over all possible values that x can assume with 
the fixed marginals. 

The hypotheses H and A are equivalent to H': O = 1 and A': O # 1, 
respectively. Hence, the function L(8, tlx) at O =  1 is expressed as 

In the set of all values that x can assume with the fixed marginals, 
let us consider the set C: of all points d such that L(1, tlx)? L(1, tld); 
that is C i  = { d ;  L(1, t ( x )  2 L(1, t 1 d)). Representing the sum over C: by 
1, and the fixed level of significance by a,, the test function, Fuo, of 
the FE test is 

Fao(x,t)=O if 1 ~ ( l , t l d ) 2 a ,  
d 

and (4) 
Fuo(x, t) = 1 if L(1, t 1 d )  <a,. 

d 

Looking at expressions (2) and (3), we can write 

that suggests a close relation between B,(x, t) and Fao(x, t), the two 
exact tests in confront. Note, however, that L(1, tlx) is used differ- 
ently by the two tests. 

Finally, we emphasize that two decision rules have been construc- 
ted. Objectively, two different 'partitions of the sample space were 
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98 T. Z. IRONY AND C .  A. B. PEREIRA 

defined. We claim that the comparison of these two partitions, 
described in the sequel, is objective without any appeal to philosoph- 
ical and theoretical arguments. 

3. BE TEST VERSUS FE TEST 

3.1 Preliminaries 

A test of H against A is an acceptlreject rule associated with a 
statement about the values of the error probabilities. To represent 
the values stated by the BE test we write a(Bk) and PCBk) for the 
probabilities of first and second kind of errors, respectively. Analo- 
gously, for significance level equal a,, a(Fao)=a, and D(Fao) are the 
corresponding values stated by the FE tcst. These stated values, 
however, may not be equal to the actual values of the frequencies in 
which the two kinds of errors are commited by using these tests. 
Respectively to the first and second kind of errors, let us represent 
the true value of the error frequencies by 

ALFAB, and BETA B, for the BE test 

and 

ALFAFao and BETAF," for the FE  test. 

The way of comparing the tests and how they were constructed is 
explained next. 

With the order of importance between the errors fixed by the 
value of k, we state the criterion of choice. This value of k specifies 
the BE test function B, and its error probabilities 

~l~ =u(Bk) and j(Bk). 

With a, = a,, we define the test function Fak. After fixing the values of 
k and a,, we name the tests as B,E test and FaoE test or FEkE test if 
a, =ak  = n(Bk). The following definition states our choice criterion. 

DEFINITION The B,E test (the FmoE test) is better than the FaoE test 
(the BkE test) if the following conditions are satisfied: 
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EXACT TESTS FOR TWO PROPORTIONS 

i) (cc(B,) - ALFA B, 1 5 1 cr(F,J - ALFA F," 1 
( S )  

and 

ii) ALFA B, + kBETA B, 5 ALFA Fao + kBETA Fzo. 
( 2 )  

In case of a, = a(B,), FEk substitutes F,". 
Note that the distance between the true frequency and the stated 

probability of the second kind of error was not included in the 
definition. The reason for this is that the F E  test does not specify 
P(F,J. Condition (i) indicates which one of the two tests lies to a less 
extent. Condition (ii) indicates the test with less error frequency. 

To proceed with our analysis, we consider the particular case 
where the two kinds of error have the same importance. That is, 
k = l  is going to be used in the sequence. Recall that in this 
case the two test functions are represented by B, and Fzl and write the 
B,E test and the F E I E  test. 

The test functions B, and F,, are characterized by the critical 
regions CB, and CFz1 defined below. If (x, t) is the data observed let 
us consider 

X 

F ( x ] ~ , m , t ) =  1 ~ ( 1 , t l d )  and min[~(l,tld):l-~(l,tld)]=f(x,t). 
d = 0 

The two critical regions are 

CB, = {(x, t); b(x, t) < 1) 

and 

CFq = (x, t); fix, t) <- i 2 

where 
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100 T. Z. IRONY AND C. A. B. PEREIRA 

the sum covering all points of CB,. The value of j?(B,) is evaluated 
as 

number of elements of CB,  
B(Bd = 1 - (m  + I)(n + 1) 

To illustrate the evaluation of the above entities, we consider the 
following example. 

Example 1 Consider the case where m = n  =5. The values taken 
by the two functions, B ,  and F a t ,  in each sample point are given by 
the following decision boards. Here, 

20 4 
a1 =a(B1)=0.2251 and ,!3(B,) = 1 - -=-. 

36 9 

TABLE 111 

Values assumed by the test function B , ( x ,  t )  

TABLE. IV 

Values assumed by the test function F , , ( x , t )  where 
a ,  =x(B,)=0.2251 
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EXACT TESTS FOR TWO PROPORTIONS 101 

Note that both tests state the value 0.2251 for the first-kind-of- 
error probability. However, the boards show the difference between 
B, and F,,. Hence, since CF,, # CB, and CFGl c CB,, at least one of 
the tests is making a wrong statement about the first kind of error. 

3.2 The simulation 

In order to estimate the true values of the error frequencies, a 
large number of simulated samples have been considered. 

Remember that if p=q, then one who rejects H:p=q is com- 
mitting the first kind of error. To estimate the values of ALFAB, 
and ALFAFX1 we consider nine pairs of points (p, q) where p=q.  
These nine values of p=q  are 0.1,0.2,. . ., 0.9. For each one of these 
parametric points, a thousand samples (like Table I) were simulated. 
For each one of these simulated samples we have calculated the 
values (0 or 1) of the test functions B, and F,l. For each one of the 
nine parametric points, (p, p), we estimate the error frequencies by 

number of samples at (p, p) where B,(x, t )  = 1 
= a l f a ~ ,  I p  

1,000 
and 

number of samples at (p, p) where FEl(x, t )  = 1 
=alfa~,,Ip. 

1 .ooo 
Example 2 (continuation) Table V presents the values of 

a l f a ~ , ( ~  and a l f a ~ , ~ ( ~  in the case of m=n=5.  
It is interesting to note from Table V that alfa B, ( p > alfa Fnl 1 p for 

all nine values of p. 
Since we want to characterize the best test independently of (p, q), 

we estimate the true first-kind-of-error frequencies, ALFAB, and 
ALFAF,,, by 

total number of samples in which B,(x, t )  = 1 
alfa B, = 

9,000 

and 

total number of samples in which FZl(x, t )  = 1 
alfa F,, = 

9,000 > 

the averages of a l f a ~ l p  and alfaF,, Ip. 
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TABLE V 

Estimates of the true first-kind-of-error frequencies 
in some parametric points for m = n = 5 

P alfaB, lp alfa F Z 1  I P 

Excrmple 3 (continuation) For the case of m = n = 5 we obtain 

a, = a(B,) = 0.2251, alfaB, = 0.2576, and alfaF,, =0.0673. 

Although alfa F,, < alfa B,, we have (cx(B,) - alfa B, ( = 0.0325 < la, - 
alfa~,~(=0.1578,  which means that the B,E test lies less than the 
F,,E test. This conclusion uses the fact that alfaB, and alfaFa1 are 
good estimates of ALFA B, and ALFA FaI. 

Recall now that if p#q, then one who does not reject H : p = q  is 
committing the second kind of error. 

To estimate the values of BETAB, and BETAF,, we consider 36 
pairs of points (p, q) where p<q; p  taking the values on 
(0.1,0.2,. . . ,031  and q taking the values on {0.2,0.3,. . . ,0.9). (The 
symmetry of the problem allowed us to consider no point (p ,q)  
where p>q.) To each of these pairs a thousand samples were 
simulated. To each one of these simulated samples we calculated the 
values (0 or 1) of the test functions B,  and Fal .  For each of the 36 
points, (p, q), we estimate the error frequency by 

number of samples at (p, q) where B,(x, t) = 0 
1,000 

=betaB,)(p, q) 

and 

number of samples at (p, q) where F,,(x, t) = O  
1 .ooo = betaFal ((p, q). 
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EXACT TESTS FOR TWO PROPORTIONS 103 

Example 4 (continuation) Table VI presents the values of 
betaB,(p, q) and beta Fal [(p, q) in the case of m=n = 5. 

Table VI indicates that beta B, l(p, q) < bstaF, ((p, q), for all (p, q), 
in the contrary direction of the alfa values of Table V. 

TABLE VI 
Estimates of the true second-kind-of-error frequencies in some para- 

metric points for m = n = 5 

p q betaB, betaF,, p q betaB, betak',, 

Analogous to the estimation of ALFA, we estimate the true 
second-kind-of-error frequencies by 

Total number of samples in which B,(x, t )  = O  
beta B, = 

36.000 

and 

Total number of samples in which FJx, t )  = O  
beta Fal = 

36,000 
> 

the averages of beta B, / (p, q) and beta F,,  1 (p, q). 
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104 T. Z .  IRONY AND C. A. B. PEREIRA 

Example 5 (continuation) For the case of m = n = 5, we obtain 

20 4 
P(B,) = 1 - -=-=0.4444, betaB, =0.4339, and betaFml =0.6731. 

36 9 

On the other hand we notice that a(B,)+P(B1)=0.6696 and that 
alfa B, +beta B, =0.6915. Since alfaFul + betaF,, = 0.7404, we esti- 
mate that, for m = n = 5, 

ALFA B, + BETA B, < ALFA F,, + BETA F X 1 ,  

and, from the prcvious example, that 

/@,) - ALFAB, ( < la(~cx,) - ALFA F , ~  1. 
Hence, using Definition 1 we conclude the superiority of the B,E test 
for m= rz = 5. Figures 1 and 2 illustrate this fact by presenting the 
power functions of the two tests. Note that the power function of the 
B,E test takes higher values, for all (p, q), than that of the FElE test. 

Table VII presents the results obtained for different values of 
m = n. For all sample sizes included in the table, the conclusion favors 
the B,E test in prejudice of the F,,E test. The values of a(B,)=a(FE1) 
are closer to the corresponding values of alfaB, than to the values of 
alfa Ful and alfa B, + beta B,  < alfa F,, +beta FN1 indicating that the 
B,E test commits less error than the F,,E test. 

The results presented in Table VII suggest that the FalE test must 
be substituted by the B,E test. This conclusion is in the direction of 
Definition 1. Example 7 presents the same results in two cases where 
m#n. 

Example 6 Table VIII presents the results for (m, n) = (5,3) and 
(m, n)'= (8, 14). 

Again, the superiority of the B,E test over the FulE test is 
suggested. The decision boards are presented next in order to give 
the opportunity to the reader to analyse the conservativeness of the 
Ful function. 

We claim that the results presented in this section permit us to 
conclude that, in the sense of Definition 1, the BE test is better than 
the FE test. In the next section, we analyse the construction of the 
FE test. 
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Stated and actual error frequencies in the case of m= n. 

d B , )  + AlfaB, + alfaF,, + 
m = n  d B , )  B(BA w , )  alfaB, betaB, betaB, alfaF,, betaF,, betaFa1 
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108 T. Z. IRONY AND C. A. B. PEREIRA 

TABLE VIII 
Stated and actual error frequencies for (m, n)=(5,3) and (m, n) =(8,14) 

@I) + alfaB, + alfa F,, + 
m  n c((B1) P(BI) P(BI) alfaB, betaB, betaB, alfaF,, betaFa1 betaF,, 

TABLE IX 
Decision board of the B,E test for m=5 

and n = 3  

0 0 0 1 1 1 1  
1 0 0 0 0 1 1  
2 1 1 0 0 0 0  
3  1 1 1 1 0 0  

TABLE X 
Decision board of the F E I E  test for m  = 5 

and n=3  

TABLE XI 
Decision board of the BIE test for m= 8 and n =  14 
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EXACT TESTS FOR TWO PROPORTIONS 109 

TABLE XI1 
Decision board of the F,,E test for m=8 and n= 14 

t - x  
Y 0 1 2  3 4  5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

4. THE BE WITH k SATISFYING a(Bk)=alfa Fa, 

Although our discussion now restricts itself to the particular case of 
m = n = 5, the conclusions are general. The intention here is to make 
the analysis as understandable as we can. 

One may criticize the B,E test, which minimizes ALFA +BETA, 
saying that it gives the same importance for both kinds of error. On 
the other hand, in the Fe1E test the ALFA value is lower than in the 
B,E test. This may lead one to the following wrong conclusion: "a 
researcher who considers that the first kind of error causes more 
damage than the second kind of error must prefer the F,,E test". 
That this is a wrong statement is suggested in the discussion below. 

Recall that the choice of k in the construction of the BE test 
defines the degree of importance of one kind of error in relation to 
the other. The BkE test is the test which minimizes ALFA+kBETA. 
In that way, when we take k<  1 we are supposing that the first kind 
of error causes more damage than the second. Hence, the minimiz- 
ation power affects ALFA more intensively than it affects BETA. 
Contrarily, if k>  1 ALFA and BETA change places. This means that, 
by choosing appropriately the value of k, the B,E test will produce 
the desired value of ALFA. 

In the case of m = n = 5, we noticed that alfaB, = 0.2576 > 0.0673 = 

alfaFEI although the stated value a(Pe1) is not close to alfaF,l. In 
order to have a BE test stating the first kind of error as alfaF,, = 
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0.0673, let us find a value of k, if it exists, such that a(B,)=0.0673 
and fl(B,) = betaFnl = 0.6731. That is, this value of k, k', has to satisfy 
the two following equations: 

and 

number of elements of CB,, 
/l(Bk,) = 1 - = 0.673 1 

6 x 6 (6) 

From Eq. (6) we conclude that CB,, must have twelve sample 
points since the number of elements of a set must be integer. To 
determine these twelve sample points we settle the condition of the 
Bayes test that a(B,,) must take the lowest possible value. An 
extensive analysis of the values taken by fN in the sample sapace 
permit us to conclude that the critical regions of the F,,E test and of 
the B,,E test are the same (see Table IV). That is, CFnl=CBkr or the 
two test functions F,, and B,, are equal. Clearly this does not mean 
that the FglE test and the B,,E test are the same. Although FnI = B,, 
the stated values a(FnI) =0.2251 and a(B,,) may be very different. 

To evaluate the constant k' we recall that 

The boundary points of CB,, are the points (x, t )  =(4,5) and (x, t )  = 
(1,5) which produce the following inequality 
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EXACT TESTS FOR TWO PROPORTIONS 11 1 

On the other hand, the boundary points of the acceptation region 
are (x,t)=(5,8) and (x,t)=(0,2) which produce the following 
inequality 

The conclusion is that for any value of k' in the interval (0.3247, 
0.7272), the test function B,, is equal to the test function Fal. 

We notice now that a(Bk.)=0.0577 and fi(Bk,)=0.6667 meaning 
that neither Eq. (5) nor Eq. (6) are exactly satisfied. The reason for 
this is that the values of a(B,,) and /3(B,,) are obtained from the use 
of f, and f', which are discrete probability functions, and alfaB,= 
0.0673 and beta B,. =0.6731 were obtained by simulation. 

Comparing, in terms of Definition 1, the FalE test and the Bk.E 
test, for any kt~(0.3247,0.7272), we obtain 

i) 0.0096 = I u(B,,) - alfa B,. I < I U(F,~) - alfa F , ~  / = 0.1578 

and 

ii) ALFA B,, + klBETA B,. = ALFA FE1 + klBETA F a I .  

Again, this indicates that the BE test is better than the FE test. 
It is interesting to emphasize that 0.6694 = a(B,) + P(BJ < a(Bk.) + 

P(B,.) =O.7244 and that, for any k'~(0.3247,0.7272), a(B,) + 
k'/3(Bl) > a(Bk,) + klP(Bk,). 

5. WHY IS THE FE TEST SO CONSERVATIVE? 

Fisher (1939) has asserted that the marginals (m, n, t, M - t )  carries 
no information about the veracity of one of the alternative hypo- 
theses, H or A. This reasoning leads us to consider the Hyper- 
geometric distribution as the basic model, leaving out the 
probability distribution of the marginal t. From the definition of 
the test function F,, given by expression (4) in Section 2, we realize 
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that it strongly depends on the value of t through the function 
p(x,t)=zdL(l,tId),  where the sum is over the set C:= 
{d;  L(l, t Id) ,< ~ ( 1 ,  t lx)}. The value of p(. ,  .) at the observed sample 
(x, t) is known as the p-value of (x, t). For each fixed value of t ,  we 
can compute the conditional probability of rejecting H given this 
value of t (Berkson, 1978). That is, 

where the ?urn is over the set Ci=(x; F,(x, t)= 1). The values of 
~ ( F , I  t )  for a = a, = 0.2251 and m = n = 5 are presented in Table XIII. 

TABLE XI11 
Values of cc(F,lt) in the case of 

a=0.2251 and m=n=5 

t @,, It) 

SUM 0.6349 

None of the values of a(FaI I t) presented in Table XI11 are equal to 
a(Bk,)=0.0577, the value of ALFA stated by the Bk,E test. However, 
the average of the values of Table XI11 is 

1 '0 
o7(FX1) =- 1 a(Fel It) = 0.0577. 

11 t = o  

That is, &(F0 ,,,,,) =a(B,,) =0.0577. Hence, if in the F,,E test we 
substitute the stated value of ALFA, u,, by cZ(F,,) we obtain the BkrE 
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EXACT TESTS FOR TWO PROPORTIONS 113 

test. Since E<a,, we conclude that the FE test is conservative 
because it states a value for the first-kind-of-error probability higher 
than it really must be. To consider ii as the first-kind-of-error 
probability is equivalent to consider a discrete uniform distribution 
for t (Krewski, Brennan and Bickis, 1984) and state the first-kind-of- 
error probability as the mean of a (~ , l t ) .  To compute the second- 
kind-of-error probability Krewski, Brennan and Bickis (1984) consi- 
dered a uniform prior in the unit square as a mixture distribution of 
(P, 4)  for 

6. FINAL OBSERVATIONS 

In spite of our analysis being restricted to particular sample sizes, 
the generalization of the conclusions is natural due to the general 
construction of the two tests. In fact, by adjusting the statement 
about the first kind of error in the FE test, there is no difference 
between the FE and the BE tests. 

The difference between a(Bk) and alfaB, observed is due to the 
decision of simulating samples for few parametric points. This 
difference will decrease if in place of {0.1,0.2, . . . ,0.9) we consider 
{0.01,0.02,. ..,0.99) to choose the values of p and q. However, the 
time consuming in the computer would increase too much. By its 
own construction, the values stated by the BE test are in fact the 
actual value of the frequencies of the first and second kind of errors. 
This is the real advantage of using the BE test (equivalently, the FE 
test adjusted by E). 
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