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SUMMARY 
This paper develops a Bayesian approach to the problem of incomplete categorical data informa- 

tively censored where the reported sets are not restricted to follow any specific pattern. It generalises 
that introduced by Paulino & Pereira (1992) in not requiring a censoring pattern by partitions of 
the set of sampling categories. Some extensions are also discussed. 

Some key words: Bayesian analysis; Dirichlet and generalised Dirichlet distributions; Informative censoring 
process; Unidentifiability. 

Standard models for censored categorical data are usually nonidentifiable. Paulino (1991) pre- 
sents a survey on the subject. This problem has been bypassed in the non-Bayesian literature by 
restricting the analysis to two types of procedures: see, e.g., Little & Rubin (1987). One of them 
assumes that the censoring mechanism is ignorable; i.e. the unknown parameter of the distribution 
describing the censoring mechanism is unrelated to the parameter of interest. Classical inferences 
must then be interpreted as conditional on the observed censoring pattern (Paulino, 1991). The 
other procedure assumes that the nuisance parameters of the censoring mechanism are known. In 
this case, the report process, defining the censoring mechanism, can be informative but the ensuing 
analysis is unavoidably conditional on the assumed values of the nuisance parameters. For more 
details about informative versus noninformative report processes see Rubin (1976) and Dawid & 
Dickey (1977). 

Although the effects of unidentifiability on Bayesian inference are less drastic than on classical 
inference, almost all Bayesian procedures have been developed under the same kind of restrictions 
on censoring mechanisms: see Dickey, Jiang & Kadane (1987) and references therein. These pro- 
cedures are not suitable for incomplete data problems where prior beliefs violate the assumption 
of a noninformative incompleteness mechanism. 

Paulino & Pereira (1992), extending the work of Basu & Pereira (1982), developed a Bayesian 
solution which neither assumes an ignorable censoring process nor proceeds conditionally on fixed 
parameters of this process; compare Kadane (1985). This also differs from other methods which 
assume nonignorable nonresponse mechanisms, e.g. Park & Brown (1994). The procedure described 
by Paulino & Pereira (1992) considers an informative censoring mechanism for data patterns where 
the reports can be structured into partitions of the set of sampling categories. There is no common 
element between any pair of those partitions. This is relevant for contingency tables where censoring 
is usually defined through incomplete classification only into marginal tables. However, this does 



not cover all cases, since the incomplete categorisation can occur in an entirely arbitrary collection 
of subsets such as the example of 5 4 of the present paper. 

The main purpose of the present paper is to develop a Bayesian solution to the problem under 
an informative general censoring pattern. This solution, based on Dirichlet priors for all the model 
parameters, is described in $5 2 and 3 and illustrated in 5 4. Section 5 is devoted to a summary of 
other less tractable solutions developed in C. D. M. Paulino's 1988 University of S2o Paulo doctoral 
thesis and based on more general prior distributions capable of expressing wider prior beliefs. In 
5 6, some brief conclusions are drawn. 

2. LIKELIHOODAND PRIOR DISTRIBUTION 

Consider a population partitioned into m categories from which a random sample of size n is 
to be chosen. Let 8' = ( d l , .  . . , 8,) be the vector of positive probabilities of the categories such 
that Xi Qi = 1. The sampling process can be defined by random variables W, (k = 1, .  . . , n), where 
W, = i if the kth sample unit belongs to the ith category, i E {1,2,. . . ,m). We then obtain a finite 
sequence of independent and identically distributed random variables with a multivariate Bernoulli 
distribution parametrised by 8. 

In the incomplete data problem, the {W,) are not fully observed for some, possibly all, sample 
units. For each sample unit, it is known only that it belongs to some reported nonempty subset d 
of {1,2 , . . . ,m). 

Let r, be the cardinality of d. A unit is said to be fully categorised, or uncensored, if r, = 1. One 
says that there is a partial or complete censoring depending on whether 1< r, <m or r, = m. 
Denote by ,Idithe probability of a unit which belongs to category i being reported to lie in class d. 
We assume no misclassification errors; that is ,Idi=0 whenever i d. However, with minor changes 
in the model, the case of untruthful reports can be covered too. 

Let D be the class of possible reported subsets, that is d E D if and only if ,Idi> 0 for some i = 

1, .  . . ,m. We assume that D includes the cases of no censoring, Do = {{i), i = 1,.  . . ,m}. However, 
if ,Iii= 0 for some i, our results can be easily adapted by removing the associated terms pertaining 
to fully categorised units. Also, D may include the complete censoring case {I, 2, . . . ,m}. The 
reporting process is described by associating with each sample unit k a random variable R,, taking 
values in {I, 2, .  . . ,c}, where c is the cardinality of D. Thus, Adi is the conditional probability that 
Rk takes on the value indicating the report d, given that W, indicates the category i, i E d, for any k. 

The joint outcomes of the sampling and reporting process are the values of the sequence 
{(W,, R,), k = 1, .  . . ,n) of random vectors, independent and identically distributed with joint 
distribution indexed by the parameters 8 and Pi = (Adi, d E Di), for i = 1, . . . ,m, where 
D i = { d € D : i e d ) .  

The values of Rk (k = 1, .  . . ,n) define the observable data from which we wish to draw inferences 
about 8, the parameter of interest. The likelihood function of 8 and P = (Pi, i = 1, .  . . ,m)' is 

/ \ n d  

~ ( 0 ,P I{R, )) = n (z~ i ~ d i )  
d e D  i e d  

where n,, respectively ni, is the frequency count of reports in d, respectively {i}, and D, = 

D -Do with cardinality 1 = c -m. The data may be summarised as N = (N; , NL)', where 
Nb = (ni, i = 1, . . . ,m) and NL = (n,, d E D,). 

For convenience we shall sometimes use other parametrisations. One of them refers to the joint 
probabilities {pdi = Bi/Zdi), in number r =m + r,, where r, is the number of categories in d. 
These probabilities can be arranged in a two-way m(m + 1) table, defined by the sampling and 
reporting categories, which contains m(m + 1) - r structural zeros, since ,udi= 0 whenever i d. 

The likelihood expression under the parametrisation ,u= (,udi) shows that the model is unidentifi- 



able. The parameters of interest, Bi = C d E D i p d i ,are usually unidentifiable as well. They cannot 
be determined by the identified functions, { C i E d p d i ,d E D ) ,  unless further assumptions about { A d i )  
are made. This is why most procedures assume that the { A d i )are either independent of i, for each 
d E Di ,  or are known. This practice cannot be entirely justified from a Bayesian viewpoint, as shown 
by Paulino & Pereira (1992) .  

For the purpose of identifying which parameters are updated and which are not, we consider 
another parametrisation (y, a) .  Here, y = (yo ,  y,, d  E D,) contains the marginal probabilities of full 
classification, 

and partial classification in each d E D,, 

Yd= x pdiE 1 e i A d i ,  
i E d i E d 

while a = (a;,  a&,  d  ED,)'  contains the conditional probabilities of each category given each kind of 
report, 

m 

a. = (ai i ,  i  = 1, . . . ,m)', a,, = pii/yO, aii= 1,
i=l  

ad= (aid7 i  E d) ' ,  aid= pdi /yd ,  x aid= 1, d E Dc.  
i E d 

If P denotes the partition indicator matrix, a block diagonal matrix with diagonal blocks 1,  
and lYd ,d E D C ,then we can write y = P'p,  under a suitable ordering of pdi in p. Note also that 
Oi = C d e D , y d a i d( i= 1, . . . ,m).  With this new parametrisation, the form of the likelihood, 

where no = l k N o ,  shows that the observations are used for updating just the parameters y and a,. 
Note that Ci,,aid = 1, d  E D,. 

For most part of this paper we consider a prior distribution for p defined by the Dirichlet 
distribution with hyper-parameter a = (ad i )E (R+)', which we denote by p -D(a) .This is equivalent, 
in the other parametrisation, to: 

e - D ( a . * ) ,  a , ,  = ( a , i ,  i =  1 , .  . . , m ) ' ,  a , i =  x adi ,  
d € Di (3) 

Pi -D(ai ) ,  ai = (adi ,  d  E Di)' ( i = 1, . . . ,m ) ,  

with 8,  P I , . . . ,P,, mutually independent; and 

y -P ' p  -D(P1a) ,  

a. E (a i i ,i = 1, . . . ,m)' -D(ao) ,  a. = (ai i ,  i  = 1, . . . ,m)',  (4) 

ad - (aid ,i E d)'  -D(ad) ,  ad= (adi ,  i  E d)' ,  d  E D , ,  

with y, a ,  and all a d ,  d  E D,, mutually independent. 
Note that the elements of P'a  are the sums of the components of a,  and ad for all d E D,, and 

a = (a;,  a&, d  E D,)'. 

3. A POSTERIORI RESULTS 


From the functional form of the likelihood of (y ,  a) ,  their posterior distribution is 


y 1 N -D ( P 1 a+ x) ,  x = (no ,  NL)', no = l & N o ,  

y, a ,  and all a,'s being conditionally mutually independent given N .  



In terms of p, the posterior distribution is a member of the family of generalised Dirichlet 
distributions introduced by Dickey (1983). In a notation somewhat similar to Dickey's, it may be 
expressed as 9k(a + xo, Q,, N,), where xo is a r x 1 vector obtained from the null vector by replacing 
the first m elements by No. Recall that 1 is the number of reporting categories involving some 
censoring, and r is the number of joint probabilities different from zero, i.e. the dimension of p. 
The symbol QL indicates the 1 x r submatrix of P' formed by the last 1 rows. Note that 
P' = (J, Q,)', with J' = (I;,, 0;,-,,). 

The density of p on the (r - 1)-dimensional simplex is 

g ( j r ~ )= g ( ~{ ED, Q,, -N,)}, n (-Ii e d  p d i r d / ~ ( ~ ,  (6) 

where A = a + xo and g(p  1 A) denotes the density of the Dirichlet D(A) distribution. 
The quantity %'(A, Q,, -N,), the D(A) expected value of the product of powers of linear forms 

of ,u indicated in (6), is a Carlson's bidimensional hypergeometric function, here expressible as a 
ratio of vector-argument beta functions, or Dirichlet complete integrals, 

B(A, Q,, -N,) %'(A, Q, -N:) = B(QfA+ N;)/B(QfA), ( 7 )  

where N; is the vector N with No replaced by the null vector and Qf=(Ib, Q,)', with 
I ,  = (I(,,, 0(,,,-,,), I(,, being the identity matrix of order m. This simple form of & is a consequence 
of Q being a partition-indicator matrix whose columns indicate the m + 1 parts of a partition of 
the cells with pdi > 0. In particular, Q'p -D(QfA) whenever p -D(A). 

The posterior distribution of p can be expressed as a finite mixture of Dirichlet distributions by 
applying the multinomial expansion by every power appearing in the second factor of (6). Letting 
(ydi) be the hypothetical frequencies, arranged into vectors yd, d E D,, underlying the observed 
total counts nd over categories i E d, the density (6) is a mixture of the densities D(a + y), where 

a +  y= (ab+  Nb,a&+ y&,d E D,)' 

The mixing distribution comes from the predictive distribution of (y,) and corresponds to the 1 
conditionally independent Dirichlet-Multinomial distributions, DM(nd, a,), for yd given nd. 

This representation for the updated distribution of p shows that the posterior distribution 
of 8 is the same mixture of the corresponding Dirichlet distributions with parameter S(y) = 
(s,,i = 1, . . . ,m)', where 

Taking into account the form of Q, the posterior mixed moments of p can be expressed by 

The computation of the posterior mixed moments of 0 can be carried out from (8). Alternatively, 
we may make use of the posterior distribution (5) in the relations 

8, = youii+ 1 yduid (i = 1, .  . . ,m). 
d € DinD, 

Thus, it is easy to show that the posterior mean of 8, (i = 1,. . . ,m) is given by 

where a. is the sum of the elements of a. 
This expression shows that the posterior mean of 0, (i = 1, .  . . ,m) is a weighted mean of the 

prior mean and the sum of a fraction of the sampling proportions of each report allocated to the 
ith category. Each fraction is defined by the posterior, or equivalently prior, mean of the conditional 
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probability of the category i given the report in each d that includes it. Note also that the second 
term in (9) is proportional to the sum, for all appropriate d's, of the predictive mean of the 'fictitious' 
frequencies {y,,, d E D,) (yii = n,), given the observed data. 

With some further algebra, the calculation of the posterior covariance matrix of 8 is also 
straightforward. 

In many situations, such as when the categories form a contingency table, there is interest in 
computing generalised posterior moments of 8, that is 

where some bi's are nonpositive integers. These quantities are also given by a ratio of Carlson 
functions but they are more complicated to compute because the argument matrix of the hypergeo- 
metric function in the numerator is not a partition indicator. If there are only a few censored data, 
one practical computational alternative is to use the mixture representation of the posterior density 
of 6, yielding 

where 

and C refers to all y,'s such that Xi,, y,, = n,, d ED,. 
Jiang, Kadane & Dickey (1992) explore computational methods for hypergeometric functions 

arising in Bayesian analyses conditional on the censoring parameters, or using ignorable censoring 
mechanism. We believe that some of these methods are useful in our set-up. In particular, the 
procedure leading to (10) can be seen as an application of the so-called expansion method. In fact, 
the numerator 92 hypergeometric function is represented in (10) by a linear combination of other 
92 functions, which are expressible in a closed form as ratios of beta functions. For extensive 
incomplete data, spread over many varied sets, this exact method will probably be cumbersome 
to apply. In this case, the use of approximations such as the Monte Carlo method, as suggested 
by Jiang et al. (1992), will certainly be a valuable alternative. 

4. ILLUSTRATION 

We use a simple example to illustrate the application of the method described in 5 3. This is 
concerned with the determination of the degree of sensitivity to dental caries, categorised in three 
risk levels: low, medium and high. The technique uses the coloration obtained on reaction of a 
spittle sample with a chemical. Based on the colour obtained, each subject is to be assigned a 
corresponding risk level. 

Due to problems with this simplified procedure, it is expected that certain subjects may not be 
fully categorised, caused by inability to distinguish adjacent categories. This is confirmed by the 
observed outcomes. Out of 97 subjects analysed only 51 were fully categorised. A total of 28 subjects 
were only classified as low or medium risk, and 18 as medium or high risk. 

Labelling the low, medium and high levels by 1, 2 and 3, respectively, we shall assume, as seems 
natural, that the possible reporting subsets are just those observed in this experiment, namely {i),  
for i = 1,2, 3, {1,2) and (2, 3). The observed data were n, = 14, n, = 17, n, = 20, n, = 28 and n, = 

18, where the indices 4 and 5 label the subsets {1,2) and (2, 31, respectively. In the notation of 
the preceding sections, No = (14,17,20)' and N, = (28, 18)'. 

The probabilities of the outcomes of the sampling and reporting processes are displayed in 



Table 1. Joint and marginal probabilities 

Sampling Reporting sets 
categories 1 2 3 4 5 Total 

1 P11 O O P41 O 4 
2 O P22 O P42 p52 O2 

3 0 0 P33 0 P53 03 
Total PII P22 P33 Y4 Ys 1 

Table 1. The experimenter feels that the conditional probability of an incomplete classification may 
not be the same for subjects of different actual risk degrees. Concretely, she believes that a subject 
of medium risk tends to have a greater probability of being classified into { 1 , 2 )  than one with a 
low risk, and into { 2 , 3 )  than one with a high risk. 

Suppose that the prior opinion of the experimenter can be adequately described by the distri- 
bution ( 3 )with 

a ; - ( a l l , a 4 1 ) = ( 3 , 1 ) ,  a;=(a22,a42,a52)=(1,1,1),  a;=(a33,a53)=(3,1) .  

Hence, the prior distribution of 8 is D(4 ,3 ,4 )  independently of 

The corresponding prior distribution ( 4 )has 

The parameters y -P'p = (yo  y4 y,)', r,, a4 and r ,  are a posteriori mutually independent, with 

We obtain the following posterior quantities for the probabilities of the various risk levels: 

10.2963 (i = 1 ) ,  10.79 x (i= 1),  


E(8i I N )  = 0.3982 ( i= 2) ,  var (8,  IN)  = 1.07 x (i= 2) ,  


0.3055 (i= 3) ,  0.45 x l o p 2  (i = 3) ,  


cov ( e l ,  821 N )  = -0.70 x 

A sensitivity analysis shows that the calculated quantities are fairly sensitive to prior assumptions 
about the value of a. This is to be expected in the light of the results found for the special case 
considered by Paulino & Pereira (1992). 

5 .  SOMEFURTHER RESULTS 

The Bayesian solution described above rests upon the prior distribution ( 3 ) , which displays 
linear relations among the hyper-parameters of { P i }  and 8. If, in ( 3 ) ,  a., is replaced by c = 

( e l ,. . . ,em)' E (R+)m,the prior distribution for p becomes the generalised Dirichlet distribution 
9,"(a,Z, c - a,,), where a, as before, is a vector formed by all the prior parameters of { P i ) ,and Z 
is the matrix indicating the partition {D,, i  = 1, . . . ,m } .  When ci > a.,, this distribution expresses 
a prior belief that the grouped probabilities {Ed,,, p,,, i = 1, . . . ,m }  are better than their 
components. 
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In this case the posterior distribution of y is still a generalised Dirichlet distribution, but with 
the argument matrix augmented by the matrix Q,. As a consequence, the posterior moments of 8, 
defined by a ratio of Carlson's hypergeometric functions, present computational difficulties similar 
to those for the generalised moments of 8 referred to in the preceding section. 

This alternative prior distribution for y is not appropriate if the prior knowledge about the 
probabilities of each type of classification is greater than about the component probabilities 
{ydi,i E d) .  This can be achieved by a higher multiplicity generalised Dirichlet distribution with a 
matrix argument defined by [Z, P I .  The term multiplicity is here used in the sense of Dickey 
(1983). In this case, the observed censoring pattern is included in the argument matrix of the prior 
distribution of y, and therefore the posterior distribution belongs to the same family. 

The use of this latter prior distribution for y implies violation of the independent relations in 
(3) and (4), as referred to in Paulino's thesis. The posterior distribution for the parameters (y, a) 
no longer presents a functional form as neat as that in (5).As expected, the computation of posterior 
characteristics becomes more complicated. In particular, neither of Carlson's hypergeometric func- 
tions whose ratio defines the posterior moments of 8 has a simple explicit form. 

The preceding prior distribution for y still implies a conditional generalised Dirichlet distribution 
for 8, given {Pi), with argument matrix, say B, depending on the values of {Pi). We may take 
advantage of this fact to study the dependence of inferences about 8 on P. Given the form of the 
conditional likelihood, the conditional posterior distribution of 8 belongs to the same family as 
the prior. The conditional posterior moments of 8 are given by the corresponding moments of a 
D(c +No) distribution multiplied by a ratio of 9 integrals associated with the matrix B. These 
results are thus a generalisation of those of Dickey et al. (1987). 

As to the implementation of these methods, two issues remain open: elicitation of this type of 
prior distribution and development of computational strategies for the evaluation of characteristics 
of interest. For the latter, the conclusions of Jiang et al. (1992) will be helpful. 

6. CONCLUSIONS 

The method described in $6 2 and 3 and illustrated in 5 4 is a Bayesian solution to the problem 
of incomplete categorical data, with a general incompleteness mechanism. The problem can be 
solved without assumptions to make the parameters of interest identifiable. These assumptions are 
used in most publications, both classical and Bayesian, mainly because the reporting process turns 
out to be ignorable. The description of our method makes it evident that many computations of 
interest are easier to execute than in the case of the noninformative reporting process analysed by 
Dickey et al. (1987). 

When the observed data can be structured into partitions of the set of sampling categories, this 
method simplifies further, as detailed by Paulino & Pereira (1992). 

The generalisations and variants of our method referred to in 5 5 are less straightforward to 
apply, requiring use of approximations for the 9 integral and its ratios, like those explored by 
Jiang et al. (1992). 
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