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ABSTRACT 

 

We describe a software system for the analysis of de-

fined benefit actuarial plans. The system uses a recursive 

formulation of the actuarial stochastic processes to im-

plement precise and efficient computations of individual 

and group cash flows.   

Keywords: Actuarial modeling, branching processes, 

defined benefit pension plans, recursive functions.  

 

1. INTRODUCTION 

 

We report the use of a software tool for the analysis of 

cash flows due to pension plans (PP) in Brazil. Many of 

the existing pension funds are of defined benefits (DB) 

type, where the retired member or his surviving depend-

ents receive a lifelong monthly income. The subjacent 

stochastic process is modeled as a branching process 

driven by several time dependent hazard rates. The ex-

pected cash flows are computed by recursive functions 

describing the branching process, so avoiding several 

approximations used in standard actuarial methods. The-

se recursive functions also give a direct calculation of the 

cash flow’s variance and other statistics.  

 

2. THE BASIC MODEL 

 

The main benefit for a DB PP (defined benefit pension 

plan) member is a lifelong retirement monthly income. 

Prior to his retirement a member is named active. The 

retirement income is a function of the active member’s 

past incomes or contributions (ex. last periods average). 

The active member makes contributions to the pension 

plan, and these contributions can be complemented by 

contributions from a sponsor (ex. employer or govern-

ment). An active member will become inactive when 

retired, at a maturity time, or earlier if disabled (ex. inju-

ry or disease). An active member can also withdraw 

from the PP.   

 

The member may have dependents (usually his family) 

entitled to a pension monthly income after the member’s 

death. Dependents may be permanent, who will receive a 

lifelong pension (ex. wife/widow, disabled children), or 

temporary, who will receive the pension for a limited 

time (ex. normal children up to maturity age of 21). Each 

dependent’s  pension is a fraction of the member’s re-

tirement income. An additional one time (lump sum) 

death assistance may also be available to the family.  

 

Several constraints and corrections [1] [4] [5] [6] [7] [17] 

increase the complexity of this basic model, for example:  

 

- The retirement, and all other benefits defined by it, may 

be corrected by a long term inflation index, or may be 

adjusted by the income of an active member of the same 

status of the retired one.  

 

- The retirement maturity time may be based the mem-

ber’s age and employment time, and also on the PP rules 

and government regulations, both changing over time.  

 

- The members may receive a basic government retire-

ment, being the PP obligation to supplement it up to the 

PP’s DBs.  

 

- Changing social habits and legal definitions may 

change the status of entitled dependents (ex. mistresses 

and out of wedlock children).  
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- Withdrawing members may claim his (or also the spon-

sor’s) contributions corrected by inflation or financial 

investment indices.  

 

3. GRAPHS AND RECURSIVE FORMULATION  

 

A branching process is described by a graph, where each 

vertex (or node) corresponds to a state, and each arch (or 

edge) connecting two vertices corresponds to a possible 

state transition. In the actuarial processes we are study-

ing, a state is characterized by the member’s age, time of 

employment, salary, family, etc. A transition is charac-

terized by its probability, as well as by the benefits and 

contributions the transition implies. Usually it is conven-

ient to give the benefits and contributions values as frac-

tions of the main benefit (retirement), or some other 

adimensional unit.  

 

The expected value of a member’s random variable (ex. 

benefits or contributions) at a given period, is its proba-

bility weighted sum of the random variable’s value at all 

possible transitions at that period: E(X(t)) = sum(j in 

W(t)) Pr(j)*x(j), where W is the set of all possible transi-

tions, x(j) the random variable value at that transition, 

and Pr(j) the transition’s probability. That random varia-

ble expected (cash) flow is the array of its expected val-

ues in the future (subsequent periods, usually years). The 

graph description of the branching processes gives a 

recursive algorithmic formulation for the computation of 

all these cash flows.  

 

4. RETIRED MEMBER GRAPH 

 

A retired member state has its age, benefits, and list of 

dependents. Let us assume that a retired member has at 

most one permanent dependent (wife). If the member 

and his wife are both alive at time t, the member will be, 

at time t+1, in one of four possible states, depending on 

his and his wife survival or not: Let the retired member’s 

and his wife’s ages be (x, y) at time t. He can reach at 

time t+1 the states (x+1, y+1), (x+1,~), (~, y+1), (~, ~), 

where the tilde (~) means death. The probability of each 

of the four transitions are given by the force of mortality, 

h(a), at the respective ages:  

 

Pr(t, (x, y), (x+1, y+1)) = (1-h(x))*(1-h(y)); Eq. (1) 

Pr(t, (x, y), (x+1, ~)) = (1-h(x))*h(y) ; Eq. (2) 

Pr(t, (x, y), (~, y+1)) = h(x)*(1-h(y)) ;  Eq. (3) 

Pr(t, (x, y), (~, ~)) = h(x)*h(y) ;   Eq. (4) 

 

A retired member leaves the system (PP) when all cash 

flows by him generated cease to exist, possibly long after 

his own death. The leaves of the retired member branch-

ing tree are the terminal state (~,~). Temporary depend-

ents (children) are supposed to always (deterministically) 

survive up to maturity age.  

 

As we have mentioned in section 2, multiple permanent 

dependents may occur. One possibility would be to in-

corporate the multiple permanent dependents directly in 

the branching process, at a heavy computational cost. It 

so happens that the standard pension rules of DB PPs 

only take into account the total number of dependent 

survivors after the members death. This allows a signifi-

cant simplification: We model the permanent dependent 

in the retirement branching process as a virtual perma-

nent dependent corresponding to the last surviving real 

permanent dependent. In appendix 1 we list a small 

Matlab program to compute the cumulative life probabil-

ity distribution of such a virtual dependent. It is easy to 

generalize the procedure to three or more permanent 

dependents. The cash flows of permanent dependents 

deceasing earlier than the last survivor can then be mod-

eled as independent cash flows.  

 

The precise modeling of the multiple permanent depend-

ents effect has a significant impact on those members’ 

benefit’s expected cash flows (typically 30%). Since this 

situation is increasingly more frequent, such careful 

analysis is recommended. Figures 1 to 4 show compara-

tive life distributions as computed in appendix 1. Some-

times the last order statistic is approximated by the sur-

vival rates of the youngest permanent dependent. From 

figures 2 to 4 can see that this approximation can be 

quite misleading.  

 

5. ACTIVE MEMBER GRAPH 

 

An active member sate has its age, time of membership, 

time of employment, education, salary, etc. While active, 

it is hard to obtain a reliable list of dependents, so active 

members are assumed to have a standard family, based 

on statistical data and the member’s general profile. If a 

member is active at time t, with age a and employment 

time e, he will reach at time t+1 one of four possible 

states, depending on he still being in the PP, active, 

alive, and able. Death, disability, and withdrawal are 

competing risks, with hazard functions (conditional on 

the non occurrence of the preceding risks) hd(a), hb(a) 

and hw(e). So the transition probabilities (except for 

deterministic retirement at maturity) for death, disability, 

withdrawal, and remaining active are, respectively:  

 

 

hd(a), hb(a), hw(e), and   Eq. (5) 

(1-hd(a))*(1-hb(a))*(1-hw(e)).   Eq. (6) 
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If the member withdraws he receives a lump sum based 

on his past contributions. If he dies or becomes disabled, 

he prematurely (in comparison to maturity) enters re-

tirement. The active member branching process is there-

fore limited to the main stem of surviving all risks, a 

structure resembling a “bamboo” more than a “tree”. The 

bamboo leaves are the terminal withdrawal state, or the 

root of a retirement branching process.  

 

6. LIFE TABLES AND OTHER ADJUSTMENTS 

 

Life tables: Force of mortality tables are available for 

several countries. The most commonly used table in 

Brazil is EB-7. However, a specific population, like the 

members of a given company or PP, can significantly 

depart from national averages. For specific PPs, some 

with up to two hundred thousand members, we had the 

need to adjust these tables. Figures 5 to 8 give some 

comparisons of these survival distributions. As usual in 

actuarial sciences we establish a cut-off, limiting indi-

vidual age to a maximum (ex. 100 years). The impact of 

these adjustments on the PP total liability is considera-

ble, up to 20%.  

 

We used a polynomial GMDH model (Group Method 

Data Handling) using the available tables (prior infor-

mation) and the PP population historic (observed and 

censored deaths) [10]. The GMDH polynomial models 

have variable complexity and several parameters. The 

best model was automatically selected by an heuristic 

search controlled by the PSE criterion (Predicted 

Squared Error) [2]. The PSE criterion’s objective is to 

minimize errors on yet unobserved data, compromising 

training data error and an overfit penalty. The final mod-

el was validated using computer intensive statistical 

resampling methods [12] [21].  

 

Fractional Age Correction: While modeling a transi-

tion between consecutive periods, from t to t+1 (depend-

ing on how de model is implemented) unrealistic as-

sumptions may be introduced, for example: A death 

transition may imply that the member dies at the very 

first (or very last) month of the year. To correct such a 

boolean (0-1) dichotomy, we may assume that the death 

occurs at the middle month, and use a correction factor 

6/12 = 1/2, or that the death occurs at the middle day of 

the middle month, and use a correction factor (6+1/2)/12 

= 13/24, and so on. These correction factors are called 

fractional corrections (or discretization corrections) [5]. 

Their impact on the final calculations is usually small, 

but they are important to preserve model consistency.  

 

Income Growth: An active member income (or salary), 

the basis for his benefits, is supposed to evolve with his 

professional life. The income usually increases over 

time, but such increase has a saturation effect. Several 

models adjust well to this situation [18], like the Modi-

fied exponential, Gompertz and Logistic (Pearl) models:  

 

M(t) = a – b*exp(-c*t) ;    Eq. (7) 

G(t) = exp(a – b*exp(-c*t)) ;   Eq. (8) 

L(t) = a / (1 + b*exp(-c*t)) ;   Eq. (9) 

 

7. IMPLEMENTATION 

 

The calculation engine was implemented in plain ANSI-

C programming language, in order to obtain a carefully 

optimized code. Intermediate lookup tables considerably 

speed up the computation of a PP many members cash 

flows. A PP with a population of 100.000 members takes 

about 3 hours of processing time on a Pentium 750MHz 

machine (MSWindows or Linux).  

 

A GUI (Graphical User Interface), written in Delphi, 

provides an intuitive and easy to customize interface to 

the corporate user. A Delphi multi-platform data transfer 

interface downloads and updates the necessary data on a 

local database (ex. AWK or Access) from the corporate 

environment (ex. DB2 on an IBM-AS-400).   

 

The analysis and simulations made with the actuarial 

system are used as inputs to the PP’s financial portfolio 

management. Several optimization models, usually em-

ploying dynamic and stochastic programming, are used 

with this objective [3] [9] [13] [14] [15] [16] [20] [22].   
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APPENDIX 1 

 

function fus= rank2(a1,a2)  

 

% F(t) is the component’s cumulative %life 

probability distribution  

% F(t) = Pr(l<=t) 

% Its complement is the survival probabil-

ity distribution  

% Fc(t) = 1-F(t) = Pr(l>t)  

% The failure probability at the next %pe-

riod x given the survival up to %current 

time t is  

% F(x|t) = (F(t+x)-F(t))/Fc(t)  

% = 1 -Fc(x|t) 

% The failure rate, hazard rate or %force 

of mortality at age t is  

% h(t) = f(t)/Fc(t)   

% Integrating  

% I[0:x] h(t)dt = -log(Fc(x))  

% Fc(x) = exp(-H(x))    

% H(x) = I[0:x] h(t)dt  

 

% A(:,1)= age  

% A(:,2)= h(t)  

 

nx=100;  

%maximum age at life table  

 

% generates test assuring h(nx)==1;  

% a= 1:nx; h= (1/nx)*a; h=h.^5;  %plot(h);  

 

% f= life density; h= haz.rate; 

% a= age; c=complement; u=cumulative  

aux=0;  

for i=1:nx  

  aux= aux +h(i);  

  hu(i)= aux;  

  fuc(i)= exp(-hu(i));  

  fu(i)= 1-fuc(i);  

end  

 

% 2 lifelong dependents     

% ak= current age of k-th depend   

% Xk= surviv. of k-th depend.   

% R2= sup{X1,X2} R1= inf{X1,X2}      

% Pr(R2<=t|a1,a2). 

% = Pr(X1<=t|a1 and X2<=t|a2)  

% Pr(R1<=t|a1,a2)   

% = Pr(X1<=t|a1 or X2<=t|a2)  

% Pr(R1>t|a1,a2)  

% = Pr(X1>t|a1 and X2>t|a2)  

 

for t=1:100  

  if( (a1+t)>nx )  

    fua1(t)=1;  

  else      %Pr(X1<=t|a1)  

    fua1(t) = ...  

    ((fu(a1+t)-fu(a1))/fuc(a1));  

  end  

  if( (a2+t)>nx )  

    fua2(t)=1;  

  else  

    fua2(t) = ...  

    ((fu(a2+t)-fu(a2))/fuc(a2));  

  end  

  f2u(t)= fua1(t)*fua2(t);   

  f1u(t)= fua1(t) +fua2(t) -f1u(t);  

end  

fus=[fu;f2u;f1u;fua1;fua2];  

plot(a',fu','--b',a',f2u,'-r',a',f1u, 

..'-r',a',fua1','--k',a',fua2','--k');  

title( ...  

..['Order statistics for survival', ...  

  int2str(a1),' and ',int2str(a2)]);    
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