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Abstract

Conditionings in a finite sequence X = (X1,Xo2,...,Xn) of real ran-
dom variables by max X¥) and by max X together with min XM are
considered. If X™) is conditionally uniform in a very general sense with
respect to a reference Borel measure v then a shorter subsequence X =
(X1,Xa2,...,Xpn),1 <n < N, can be well approximated, in the variation dis-
tance, by a mixture of n-powers of restrictions of v. These finite de Finetti
type results can be used to obtain integral representations of infinite se-
quences which have all their finite sub-sequences conditionally uniform.
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1 Introduction

In Statistics, natural kinds of symmetry in a random sequence are speci-
fied by means of sufficient statistics and kernels, see Diaconis (1988) or Diaco-
nis and Freedman (1984). The distributions of sequences under a symmetry
assumption usually form a convex set and then integral representations of the
distributions are available in numerous de Finetti-type theorems. Majority
of results in this field concerns models with sufficient statistics of the form
>y ¥(X;) where extreme distributions are products of measures in an ex-
ponential family. Relationships between predictive and classical sufficiency
has been recently clarified in Fortini et al. (2000).

Though there exist very general results on sequences with symmetries,
each particular case requires an additional work to identify explicitly the
form of mixtures and mixing probabilities. In this note we present finite and
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infinite versions of de Finetti-type theorems for sequences of real random
variables which are conditionally uniform given the maxima, or given the
minima and maxima. The adjective ‘uniform’ is specified in a very general
sense w.r.t. a reference Borel measure. This approach provides unification
and generalization of problems examined separately before, notably in Igle-
sias et al. (1998), Gnedin (1996), Rachev and Riischendorf (1991), Ressel
(1985). The connection to Fortini et al. (2000) is through the characteriza-
tion of de Finetti-type theorems via sufficiency, but our approach is different
from theirs. In a statistical language, results of this work characterize mod-
els obtained by truncating known distributions with truncating parameters
assumed to be unknown.

First, aggregates of product measures modeling the conditional unifor-
mity are examined in Section 2. Using the aggregates we obtain the corre-
sponding finite de Finetti-type theorems, when conditioned on the maxima
in Section 3 and when conditioned on minima and maxima in Section 5. The
infinite versions are worked out in Section 4 and Section 6.

2 Aggregates of Product Measures

Let (A, A, \) be a measure space, 0 < A\(A) < oo and n a positive integer
number. An element a of A is fixed assuming that the singleton {a} is
A-measurable. The Dirac measure sitting in a is denoted by d, and the
restriction of A to a set B € A by A g, that means A\jg(C) = A(B N C) for
CeA

In the first part of this section we examine the following measure on the
product space A"

Opn = Z )‘({a})m_l 6£ X A?Xf{a}
0£ICh

where 7 = {1,2,...,n}, |I| is the cardinality of I, 6! is the product measure
on A" and 0° = 1 by convention. Note that the summands are mutually
singular product measures. Let us observe that the a;, measure of (A—{a})"
is zero and a, restricted to A¥ x {a} x A"717F is equal to A\¥ x §, x A1,
0 < k < n— 1. Roughly speaking, «,, is constructed by pasting the latter n
measures together. We set t, = ay,(A").

ExamPLE 1. Let A ={0,1,2,...a} where a is a nonnegative integer, let
A be the power set of A and A the counting measure on A. Then «,, is the
counting measure on the set of all n-tuples (a1, ...,a,) € A™ having at least
one coordinate equal to a, i.e. satisfying max;¢j<, a; = a.
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EXAMPLE 2. Let (A,.A) be an interval [0, a] of the real line R (a is any
positive real number) endowed with the o-algebra of its Borel subsets and
let A be the Lebesque measure on this interval. Then ¢, is the sum of n
product measures supported by the set of all n-tuples (aq,...,a,) € A™ with
the maximum equal to a.

REMARK 1. If in one of these two examples A is a probability measure
and if Xq,..., X, are i.i.d. random variables with the law A then «, is, up
to a normalizing constant, the conditional distribution of Xi,..., X, given
max{X;; 1 <i<n}=a.

Having a measure on the product space A"** k > 1, its marginal mea-
sure on A™ will be denoted by means of the super-index (n). The bar over a
nonzero finite measure will normalize it to a probability measure. Our first
result estimates the variation distance between a marginal of the normaliza-
tion of a4 and a power of the normalized .

LEMMA 1. For every n > 1 and k > 1, the total variation | af{fﬁk X"

is at most 2n/(n + k), with the equality if and only if A({a}) = 0.

Proor. Let r = A({a}) and s = A(A — {a}), then obviously ¢, =
[(r +s)" —s™r~lif r > 0 and t, = ns"~! otherwise. It is also not difficult
to see that 045221 =say + A".

(n)  _

Using the identity t,4.x = s*t, + tx(r + s)” one can obtain Q=

skay, + tp A", k > 1, by induction. This yields

sktn

tn+k

H all X"

— N
‘an—)\

that, for r = 0, is equal to the desired bound 2n/(n + k). Here, the variation
distance of the probability measures @, and A" was two as they are singular.
If » > 0 the distance is strictly smaller than two. Expanding powers of r + s
in the above ratio and comparing corresponding terms one can see that it is
bounded from above by n/(n + k). O

REMARK 2. In Rachev and Riischendorf (1991, Theorem 6.2, p. 1332),
the above total variation with A, as in our Example 1, was bounded by
n(n + 2k)/2k(n + k); this is tighter than 2n/(n + k) if and only if n < 2k.

REMARK 3. If Xy,..., X,k are i.i.d. nonnegative random variables
following a law P then the distribution of X7i,..., X, given max{X;; 1 <
i < n+k} =aisclose in the variation distance to the law of n 7.i.d. random
variables following the law P truncated at the value ¢ > 0 from the right.
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The second part of this section is devoted to a similar result for another
aggregate of product measures of A’s and §’s. A motivation stems from a
study of uniform distributions on £y -spheres, see Iglesias et al. (1998). Let
a and b be two different elements of A with {a} and {b} measurable and

=3 A{aP)= oL < A{eh e < AT

where the summation is extended over all ordered pairs (I,.J) of nonempty
and disjoint subsets of n. Analogously as above, the measure -y, is pasted
together from n(n — 1) product measures A¥ x §, x Af x &, x \»~27F=l and
Moy x A 8y x A2k 0 <B4+ 1< n— 2. We set v, (A") = v,.

ExAMPLE 3. Let A = {a,a + 1,...,b} where a < b are integers, A be
the power set of A and A be the counting measure on A. Then +, is the
counting measure on the set of all n-tuples (a1, ...,a,) € A™ having at least
one coordinate equal to a and at least one coordinate equal to b, i.e. satisfying
minigj<p @ = a and maxigjg<y aj = b.

EXAMPLE 4. Let (A,.A) be an interval [a, b] of the real line R (a < b are
real numbers) endowed with the o-algebra of its Borel subsets and A be the
Lebesque measure on this interval. Then a, is the sum of n? — n product
measures and its support is again the set of all n-tuples (a1,...,a,) € A"
with the minimum equal to ¢ and the maximum equal to b.

REMARK 4. If in one of these two examples above A is any probability
measure and if Xq,...,X,, are i.i.d. random variables with the law A then
Qp 18, up to a normalizing constant, the conditional law of Xy,..., X, given
min{X;; 1 <7< n}=aand max{X;; 1 <i<n}=>b.

LEMMA 2. Let A(A—{a}) >0 and \(A—{b}) > 0. For everyn > 1 and
k>1

N

. 2n(n + 2k —1
Hng@k_A ( )

S (n+k)(n+k—1)
the equality being the case if and only if A({a}) = A({b}) = 0.

PRrROOF. The number v, is the value of the following polynomial in three
variables

[(ra +rp+8)" —(rg+8)" —(rp+5)" + "
TaTh

when substituting r, = A({a}), rp» = A({b}) and s = A(A — {a,b}). The
positive assumptions imply v, > 0. It is not difficult to establish that fyT(LTjr)l =
$Yn + ap + By where 3, is constructed analogously as «;,, when ¢ is switched
to b. After verification of the polynomial identity

Vnk = 5500+t o + Bty + Ok (rg + 13+ 5)"
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where t,{cilb} = [(ry + 5)* — sk]rb_l, tna = [(ra + 15 +8)" — (rp + 5)"ry ' and

t,‘ﬁ and ¢, are defined correspondingly, one can obtain by induction

b
%(ﬁ)k = sy, + t,&‘b}an + t,i};ﬁn + v A" .

The desired total variation takes the form

(1 _ (ra+7’b+8)n> H”_Xn
Un+k

where (1 is a convex combination of @y, B,, and ¥,,. If r, = 0 and r, = 0 then
pand X" are singular, v, = n(n — 1)s"~2 and the above expression is equal
to the upper bound. In the opposite case, r, + 1 > 0, it suffices to prove
that

(ra—i-rb—i-s)k — (ra—i-s)k — (rb+s)k + sk k(k—1)

n
(ratrts) (ra+rp+s)PHe—(rgts)th—(rys)nte4sntk = (ntk)(nt+k—1)

Without loss of generality we can assume that r, + 1, + s = 1. Let us write
r=rq+S,y=ry+s, m=n-+k and look at the function

g(z,y) = m(m—1) [l—xk—yk—i-(x—i-y—l)k] —k(k—1)[1—2"—y"+(z+y—1)"]

that should be nonnegative for 0 < z <y < 1and z+y > 1. The expression

1 9 0 k=1 _ k=1 -1 -1
— (£ Z = (m—1 - (k=1 (@™ —ym
2 (5= 5) o) = n= DA = — =t =)
is non positive, due to (k —1)(1 —2™71) < (m — 1)(1 — 2¥71), 0 < 2 < 1.
Since g(z,1) = 0 for 0 < # < 1 the nonnegativity of g is confirmed. O

REMARK 5. Let X1, Xo,..., X+ be i.2.d. random variables with a com-
mon law P. Lemma 2 and the previous remark imply that the distribution of
X1,..., Xp given min{X;; 1 <i < n+k} =acand max{X;;1 <i<n+k}=0>
is close in the variation distance to the law of n 7.i.d. random variables dis-
tributed according to the truncation of P at a from left and at b > a from
the right.

3 Conditioning by Maximum in a Finite Sequence

In this section and in the following one let v be a nonzero Borel measure
on the real half-line [0,00) so that every closed interval [0,a], a > 0, has
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finite v measure. The interval [0, a] with its Borel subsets and the restriction
V|[0,q) are taken for the measurable space (4,.4, A) and the finite measure oy, 4
is constructed, n > 1, adding the index a to express explicitly dependence
on ¢ > 0. The normalization @, is a probability measure if ©[0,a] > 0;
otherwise, it is treated as a zero measure.

While introducing the following definition, we had in mind especially the
Lebesgue measure or the counting measure on nonnegative integers as v (see
Example 1 and Example 2, respectively).

DEFINITION 1. A finite sequence X(™ = (X1,...,X,), n > 1, of non-
negative random variables is said to be v-uniform given its maximum if the
distribution Py (n) is equal to the mizture

/ Qna PmaxX(”) (da) .
[0,00)

An infinite sequence is v-uniform given maxima if every finite initial segment
of it is so.

Equivalently, @, , is assumed to be a conditional distribution of X (n)
given max X(™ = a. These sequences are obviously exchangeable.

Every i.i.d. sequence distributed according to Tjjgq],V|jp,q) OF V is V-
uniform/max provided that v[0,a] > 0, v[0,a) > 0 and v is finite, respec-
tively. Convex combinations of the distributions of v-uniform/max sequences
are v-uniform/max.

PROPOSITION 1. An initial segment X(™ = (X,,...,X,) of every finite
random sequence X(N) = (X1,...,XnN), 1 <n < N, that is v-uniform given
1ts maximum has its distribution approrimated by

2n
N

Py _/ gﬁo,a] Prax x() (da) ‘ <
[0,00)

PRrOOF. The variation distance does not exceed

/[O,oo) H N0~ Vllo,a)

where values of the integrated function are either zero, as the two measures
are zero, or bounded by 2n/N owing to Lemma 1. O

Pmax X ) (da)
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4 Conditioning by Maxima in Infinite Sequences

It is straightforward that if ¢ > 0 and v[0,a] > 0 (a > 0 and v[0,a) > 0)
then the measure 77 . (ﬁﬁ%’ a)) is a distribution of infinite sequences that
is v-uniform given maxima. If v is finite then also 7*° is a distribution of
this type. In the assertion below we show that mixtures of all these product
measures exhaust distributions of this type. We prefer to work with the
family of measures g4, @ > 0. A measure v|jg,), a > 0, is not in this
family if and only if v({a}) > 0 and v(b,a) > 0 for every 0 < b < a. Let us
denote by S, the set of all these positive numbers @ and let, in addition, oo
belong to S, if and only if v is finite and v(b,00) > 0 for all b > 0. The set

S, is at most countable.

THEOREM 1. Let X = (X,; n > 1) be an infinite sequence of nonnegative
random variables that is v-uniform given maxima. Then there exists a finite
measure k on the real half-line [0,00) and nonnegative numbers K, for a € S,
such that

PX = /[0 : ?ﬁ%’a] Kl(da) + Z ?‘O[?)’a) KRgq

U.GSV

and £[0,00)+),cg, ka = 1. The measure K can be chosen to satisfy r (b, c] =
0 once v(b,c] =0, 0 < b < ¢, and then it is unique with this property. The
numbers K, are unique as well.

This assertion could be, with a considerable effort, adjusted to the frame-
work of Theorem 1.1 from Diaconis and Freedman(1984). We prefer to have
a swift analytical proof identifying explicitly all ingredients of the mixture.

PRrROOF. Uniqueness of the measure x and of the numbers x,, a € Sy,
follows from uniqueness in the classical de Finetti theorem. In fact, let B, be
the Borel set [0,00) — |J{(b,¢]; v(b,c] = 0} and let ¢, (a) = max{b < a; b €
By}, a > 0. The integral from Theorem 1 can be equivalently written as the
integral of the same function over a € B, with respect to the ¢, image of
the measure «.

Let p, denote the distribution of maximum of Xy,...,X,, n > 1. For
every a > 0 the sequence uy[0,a], n > 1, does not increase. The func-
tion a — limy_ o0 1[0, a] is non-decreasing and right-continuous and hence
equal to a — p[0,a] for a unique Borel measure p on [0,00). Let k, =
limg 00 k[0, a) — p]0,a), a > 0, and Koo = 1 — [0, 00). Note that 0 < k4 <
p({a}) for any positive a. We set £ =pu— 3 2.cq, Kala-
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If v(b,c] = 0,0 < b < ¢, then also py(b,c] =0 for any n > 1 whence
w(b,c] =0 and k(b,c] =0. By Lemma 1

pa(b,c] = P (10, —[0,6]") = / an) (10, = [0,6") pnyx(da)

[0,00)

" U n 2n
< /[0,00) [(7“0,@}[0,6]) - (V‘[O,a][o,b]) }MnJrk(da)jL

n+k

and since the last integral is zero and k is arbitrary we have indeed p, (b, c] =
0. As a consequence, k, = 0 once a > 0, v({a}) >0 and a € S,.

To verify the announced mixture representation of the distribution Py it
suffices to prove that for every n > 1 the distribution Py ) is equal to the
mixture of n-th power of the restricted measures. This is an equality of two
distributions that are both r-uniform given maximum whence if suffices to
verify the equality on sets [0,6]", b > 0. To summarize, we fix n > 1 and
b > 0 and want to prove that

n[0,5] = /[0 @) + 3 (Fl) = F@) ra S0

oo;éae Sl/

where f(a) = (7|[0,a}[0, b))" for a > 0, f(a-) = (7|[0,a)[0a b])" for every a €
S, — {oo} (we remark that f(a-) is really lim. », f(c) in this case) and
f(00) =lim 00 f(€) (f(o0) = 0 if v is infinite and f(oo) = (¥[0,8])" if v is
finite). Note also that 0 = f(a-) — f(a) if a € S, N[0, b].

The above equality is obviously valid if [0, b] = 0 because then u,[0,b] =
0 and the function f is identically equal to zero. From now on we can suppose
v[0,b] > 0. By Proposition 1 the integrals f[O,oo) f(a) ppsk(da) converge to
tn 0, ] once k — oo and thus it suffices to show the convergence

Iy = )f(a)uk(da)—> fla)u(da)+ Y (fla-)=f(a)) Ka+f(00) Koo

(b,OO (b,OO) aESUﬂ(b,OO)

when k approaches oco. The expression on the right side will be denoted
by K.

Let us observe that the function f < 1 is right-continuous and non-
increasing on interval (b,00). To prove the above convergence, let ¢ > 0 and
b=1"by <...< by =00, m =1, be chosen to have f(bj_1) < f(b;-) + ¢,
1 < j < m. The number I} belongs to an interval with the endpoints

m—1

te + Y fbo) p(bi1,05) + > f(b)ur({bs}) -
j=1

J=1
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Remembering that ug(c,a) — p(e, a) + kg for ¢ < a, prp({a}) — n({a}) — kq
for a > 0, and p(c, 00) = p(e, 00) + Koo, all limit points of the sequence I,
k > 1, are between

m m—1
e+ Y f(b=) plbj1,b)+ > f (b)) ({0 D)+ (F(bj=)—f (b)) kv, +f (bm=) b,
j=1 =1

and thus between +2¢ + K. Note that (f(a-) — f(a)) ko > 0 implies a € S,
and f(a-)— f(a) <efora€ S, —{by,...,by,00}. Since ¢ was arbitrary, Iy
converges to K. O

REMARK 6. If v is the counting measure on nonnegative integers then
Theorem 1 reduces to Proposition 3.2, p. 321, in Iglesias et al. (1998) (with
k = p and S, = 0). See also Gnedin (1996) or Gnedin (1994) and Ressel
(1985, Example 4, p. 910).

REMARK 7. The special case of Theorem 1 when v is the Lebesque
measure on [0,00) appeared in Example 7.1, p. 107 , in Fortini et al. (2000)
(with k ~ Pareto(a,zp) and S, = (). Also, in general, as Example 2.5,
p. 210, in Diaconis and Freedman (1984). Their statement “The necessary
and sufficient condition (for a sequence X1, Xs,..., to be a mixture over 6
of sequences of independent uniform variables with the range [0, 6]) is that
given M, = max(Xy,...,X,), the X;’s are independent and uniform over
[0, M,,], fori =1,...,n” is not correct. Instead, the X;’s fori=1,...,n and
i # j should have been independent and uniform over [0, M,,] given M, and
the mazimizer X;, for any j = 1,...,n, cf. Definition 1. This situation was
also commented upon in Bernardo and Smith (1994, p. 206).

REMARK 8. When a sequence is i.7.d. (thus the mixture is trivial) then
either k sits at a point or Kk = 0 and k., = 1 for exactly one a, depending on
Sy, being 0 or {a}.

REMARK 9. If v is a probability measure on the nonnegative integers or
on the nonnegative half line then Theorem 1 provides predictivistic charac-
terizations of truncated to the right distributions. Examples of such char-
acterizations are the truncated geometric or Poisson distributions with their
natural parameter assumed to be known.

5 Conditioning by Minimum and Maximum in a Finite Sequence

Let v be from now on a fixed nonzero Borel measure on the real line
R. A closed interval [a,b] having positive v measure, a < b, with its Borel
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subsets and the restriction v, ; are taken for (A, A, \) as in the second part
of Section 2 and the finite measure -, 45 is constructed. If v[a,b] =0, a < b,
we set Ypap = 0. If @ = b we set v, 4 = 05 once v({a}) >0 and v, 4 =0
otherwise. Let us denote by H the closed half-plane of all pairs (a,b) € R?
satisfying a < b.

DEFINITION 2. A finite sequence X = (X1,...,X,), n > 1, of real
random wvariables is said to be v-uniform given its minimum and maximum
if its distribution Py ) can be written as the mizture

[HI Vn,a,b P(minX(”),maXX(”)) (da” db) :

An infinite sequence is v-uniform given minima and maxima if, as in Defi-
nition 1, every finite initial segment of it is so.

REMARK 10. In a more applied context of lifetime data analysis, Barlow
and Tsai (1995) considered r—uniformity on invariant maxima and sum sets.

PROPOSITION 2. An initial segment X" = (X1,..., X)) of every finite
random sequence XNV) = (X1,...,Xn), 1 <n < N, that is v-uniform given
its minimum and mazimum has the dzstmbutzon approximated by

2n(2N —n—1)
Poiy — | 7% P . da, db <
H X (n) /HVHa,b] (mlnX(N),maXX(N))( @ )H N(N— 1)

PROOF. Analogous to the proof of Proposition 1, now using Lemma, 2.
O

6 Conditioning by Minima and Maxima in Infinite Sequences

The measures 1/‘ b] for ¢ < b and VH ) Um’b} and V‘( b) for a < b, if
nonzero, are distributions of infinite sequences that are v- uniform given min-
ima and maxima. If vy ) is a finite Borel measure then also VHa +o00) and
ﬁf& too) for a € R, if nonzero, are distributions of this sort and symmetrically
with IJ‘( 0,b] and ﬁ‘( nl for b € R if v|(_ ) is finite. Finally, if even the
measure v is finite then 7 is v-uniform given minima and maxima. In the
theorem below we claim that mixtures of these infinite-product probability
measures coincide with the distributions of all v-uniform/min max sequences.

We need a convenient parametrization of the listed measures. We prefer

the closed intervals and then the measures ﬁﬁ‘t’l p Are parametrized by H.

Further, we write a € S; if v({a}) > 0 and v(a,b) > 0 for all b > a, in
addition, —oo € S,f if v(—00,0) is finite and v(—oo,b) is positive for all
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b € R. Symmetrically, we write b € S, if v({b}) > 0 and v(a,b) > 0 for all
a < b, in addition, 400 € S, if ©(0,400) is finite and v(a, +00) is positive
for all @ € R. The sets S, and S, are both at most countable.

THEOREM 2. Let X = (X,; n > 1) be an infinite sequence that is v-
uniform given minima and mazima. Then there exist a finite Borel measure
k on the closed half-plane H, finite Borel measures s on (a,+o0) fora € S,
finite Borel measures k, on (—o0,b) for b € S, and nonnegative numbers
Kap for a € S;f, b€ S, and a < b such that

Px = /u[ab (da,db) + Z/a kg (db)
+Z/ 7y )+ 3 S B ke

beS; “ N a€Sy a<besSy

The measure  can be chosen to satisfy k(Rx(b,c]) = 0 if v(b,c] = 0 and
m([b, C)XR) =0 ifv[b,c) =0, b < c, and then it is unique with this property.
The measures K}, a € S;f, can be chosen uniquely to obey k] [b1,b2) = 0
if v[bi,b2) = 0, a < by < ba, and the measures K, , b € S, can be chosen
uniquely to obey ki, (ar,as] = 0 if v(ai,a2] =0, a1 < az < b. The numbers

Kap are unique as well.

A proof of this theorem, analogous to the proof of Theorem 1, can be
worked out, see Iglesias et al. (1999). Since it is much more technical and
longer we omit it here.

REMARK 11. The special case of Theorem 2 with v being the Lebesgue
measure on R was proved in Iglesias et al. (1998). The same situation was
treated from the extendibility point of view in Gnedin (1996).

REMARK 12. Theorem 2 provides a preditivistic justification (in the
sense of de Finetti) for distributions truncated to the left and to the right.
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