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Abstract: 1t is demonstrated how a suitably chosen prior for the frequency parameters can
streamline the Bayesian analysis of categorical data with missing entries due to nonresponse or
other causes. The two cases where the data follow the Multinomial or the Hypergeometric model
are treated separately. In the first case it is adequate to restrict the prior (for the cell probabilities)
to the class of Dirichlet distributions. In the case of the Hypergeometric model it is convenient to
select a prior from the class of Dirichlet-Multinomial (DM) distributions. The DM distributions
are studied in some details.
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1. Introduction

The simplest case of the problem of nonresponse is as follows. Let /7, be the un-
known proportion of individuals in a certain population, £, that belong to a parti-
cular category A,. With 77, as the only parameter of interest, a survey is conducted
using a simple random sample of size n. Of the » individuals surveyed, n, respond to
the question ‘Do you belong to category 4,?’’ with a yes/no answer but n, =n—n,
individuals do not respond. Denoting the category of respondents by R, and the
complementary category by R’, the survey data may be summarized as

R R’
A x
1.1
A2 X & ( )

n; ny n
with A, being the complement of A4,.
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346 D. Basu, C.A. de B. Pereira / Bayesian analysis of categorical data

In many practical problems, it is understood that the nonresponse of an indivi-
dual is highly dependent on the value of the measurement under study. For example,
suppose that one is surveying a population of students in order to estimate the
proportion of cannabis smokers. In this case, it should be expected that a student
who smokes has a higher chance of being a nonrespondent than one who does not.
In this instance, at least, a nonresponse is a source of information.

The above understanding of the problem suggests that the population must also
be partitioned into the categories R and R’; that is, the class of elements which
would respond to the question, if selected, and its complement. The population pro-
portions may be displayed in a 2 x 2-tabulator form as

R R’

A pn b2 1T, IL,=1-1I,

(1.2)
Ay, pu pn 1L q=pi + P

q l1-qg 1

How can the data (1.1) be analysed vis-a-vis the parameter of interest /7, =p,; +
Pra?

If the population of size N is regarded to be infinitely large compared to the
sample size n; that is, if a multinomial model for the data is adopted, then the likeli-
hood function is

L=piip3i(1-g)". (1.3)

We represent the data by X = (x}, Xy, n,) with n,=n—(x; + x5).

Since p;, cannot be defined in terms of the sampling distribution of X, an ortho-
dox non-Bayesian would characterize 1, = p,, + p;, as nonidentifiable, and would
have little else to say on the matter. None of the many non-Bayesian methods of
nuisance parameter elimination listed in Basu (1977) apply to the present case. On
the other hand, a Bayesian regards a parameter as an unknown entity that exists in
its own right. It enters into the sampling distribution of a properly planned experi-
ment but is not defined by the experiment. Nonidentifiability is, therefore, a non-
problem from the Bayesian viewpoint.

With a suitable representation ¢ of his/her opinion about p=(p;;, P21, P12, P22),
the Bayesian will proceed to derive the posterior distribution by matching & with the
likelihood function (1.3). The posterior marginal distribution of the parameter of
interest /7, will be obtained by integration.

In Section 2 we demonstrate how the choice of a Dirichlet prior for p simplifies
the Bayesian operation. The more general case where the respondents are classified
into k (instead of 2) categories, 4,, ..., 4y, is analyzed in a similar fashion. Since the
inference is based on the data, it is of interest to study the distribution of the data
under the particular prior. Section 3 introduces the Dirichlet-Multinomial distribu-
tion and some of its properties. This distribution, besides being the marginal distri-
bution of the data, plays an important role in the rest of the paper.
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Sections 4 and § deal with the case of sampling from a finite population; that is,
the case where the statistical model is Hypergeometric or, more generally, Multi-
variate Hypergeometric. For the case where k=2, instead of p,;, P21, P12, and ps,,
the unknown frequency counts 6,;, 6,,, 6;,, and 6,, must be considered. As in (1.2),
the population parameters may be displayed as

R R’

A 1 0] 1 912 01
AZ 021 922 92

v N—-y N

(1.4)

with 6, =N—6,, and the parameter of interest being 6, =6,,+ 6,,. A Dirichlet-
Multinomial prior for 8= (6,,, 6, 6,,, 65,) greatly simplifies the analysis of the data
(1.1) vis-a-vis the parameter of interest 6,.

Notation. Let x, y and z be either random variables or random vectors. When Xx, y,
and z are mutually independent we write x11 yI1l1z. By xI1ly |z it is meant that x
and y are conditionally independent given z. If x and y have the same distribution we
write x ~ y.

Let p=(py, ..., px) be a k-dimensional positive random vector such that ¥*_, p;=
1. We write p~D(ay, ..., ;) to indicate that the distribution of p is a Dirichlet with
nonnegative real parameters oy, @, ..., &. For k=2, instead of (p;, p,) ~D(a;, a3),
we use the conventional Beta distribution notation, p; ~ B(;, ;).

Let x=(x,...,xx) be a k-dimensional nonnegative integer random vector with
fixed n= Zf-; 1Xi. We write x | p~M(n; p), where p is defined as above, to indicate
that the conditional distribution of x given p is Multinomial with parameters n and
p. For k=2, instead of (x;,x,) | (p1, p,) ~M(n;(p,, p,)), we use the conventional
Binomial distribution notation, x, | p; ~Bi(n; p;). When 8=(4,,...,0;) is a non-
negative integer random vector with ¥¥_,6;=N fixed, we write x | 8~H(N, n, 0) to
indicate that the conditional distribution of x given @is Multivariate Hypergeometric
with parameter (V, n, 8). For k=2, instead of (x;,x,) | (6;, 6,) ~H(N, n, (6,, 6,)), we
use the conventional notation for Hypergeometric distributions, x, | 6, ~h(N, n, 6,).
The probability function corresponding to H(M,n, @) may be expressed in the

following two ways:
() () ()
X1/ \X, Xk /
N
(z
n N-n
(xl,...,xk <01—x1,...,0k—xk>

N
0y, ....0k
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348 D. Basu, C.A. de B. Pereira / Bayesian analysis of categorical data
2. Nonresponse: the Multinomial model

First we consider the case of k=2, where the data, the population parameters,
and the likelihood are described by (1.1), (1.2) and (1.3) respectively.

In the full response model, it is well known that the family of Dirichlet distribu-
tions of the correct dimension is the natural conjugate family for the Bayesian
analysis. That is, if y, and y, were the observations in R’, and

P= (P11, Pa1s P12, P2) ~ D(ayy, Qa1 @12, 02) 2.1
a priori, then the posterior distribution would be
D(ayy + X1, 01 + X2, Q12+ Y1, A2z + )2).

To introduce a Bayesian solution to the nonresponse case, it is useful to consider
the following reparametrization:

p p
q=pn tDa, (111=“]—], qi2= = (2.2)
q —-q

with the reverse transformation being

Pii=494, pPi2=1-9)q,
pa=q(—q), Pn=1-9)(1-q). (2.3)

The following general result for Dirichlet distributions is a key to the solution. Let
me{2,...,k—1} be fixed.

Lemma 1. The following set of conditions is necessary and sufficient to have
(P15 os D) ~D(0y5..., 0 ):

m m k
7= I pf~B<_Z] ) ]ai>, (i)
= )~ D@, ..r @)
y Pis--s Pm Iy Um)s (ii)
1
1_(pm+l)"-’pk)~D(am+l7"'9ak)’
-y
and
1 1
yl-l_(pl’""pm)u_(pm+l)"'7pk)' (111)
y 1-y

The proof of this result is straightforward and therefore is omitted.
Suppose that, a priori, (2.1) is considered. By Lemma 1, this is equivalent to

q~B(a.,a.,), g1~ B(ay, ay),
q12~ B(ayy, a), qllq)11q, (2.4)
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where o j=a;;+ a; (j=1,2).
The reparametrization (2.2) changes the likelihood (1.3) to

L=¢"(1-9)"qi (1 -qn)™ 2.5)
By matching the prior (2.4) with (2.5), we derive the posterior distribution of
(qa qin QIZ):
qllg;1lgn | X, (2.6)(i)
qn | X~B(ay; +x;, a2 +X3), g2 | X ~q12~B(ap, az), (2.6)(ii)
and
q|X~q|n~Ba,+n,a;+m). (2.6)(iii)
As expected, n, is sufficient to predict g, and g, is independent of the data. Since
®.,=0p+Qp=<a.,+ny, the posterior distribution of the original parameter p is

again Dirichlet if and only if n,=0. It is, however, a mixture of Dirichlet distribu-
tions, and

(P11, P21, (1 = @) | X ~D(ay; + Xy, 031 + X, .3+ 1).

Note that these properties of the posterior allow one to define a ‘nice’ conjugate
family of distributions for the nonresponse case. That is, the prior given by (2.4)
would be conjugate if, instead of ¢ ~ B(a.,, @.,), we had ¢~ B(.;, §), where f=a.,.

To proceed with the estimation of I7,, the parameter of interest, we recall (2.3) to
write 77, =qq,, + (1 — q)q;>, and consider a=q,; + &) + @3 + @2, and ;. = a;; +
(i=1,2). Under the squared error loss function, the Bayes estimator of /7, is given
by

171=E{171 | X}=E{qq+(1-q)q;2| X}.

In view of the posterior distribution (2.6), we finally have

I =E{q|X}E{q | X}+E{(1-q) | X} E{q.| X}

<0(|. +x|+ﬂn2>. (27)
a.,

a+n
We notice that (see Example in Section 3) (a;,/a.;) 1, is the conditional expectation
of y, - the sample frequency of nonrespondents that belong to 4, - given the data.
Therefore, 17, is an intuitive estimator since in the case of full response we would
have y, in place of (@)3/a.5)n,.
The generalization of the above analysis to the case of k categories, 4,..., A,
(k=2), is straightforward. Tables (1.1) and (1.2) are replaced respectively by

192
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R R’
A x
P n, (2.8)
A X

n, ny n

R R’

Ay b b2 1
S (%2
A P P2 1

q 1-g 1

The parameter of interest is now I1= (11}, ..., I1;), and the data is X = (x|, ..., Xk, 13).
In place of (2.1), a priori, we consider that

P=(D11s s Pk1s P12s -++s Pi2) ~ D(Q1 15 ooy Qg5 Q)2 oo Qi2) (2.10)

Analogous to (2.2) and (2.3) the following reparametrization is considered:

Di Di .
P, an="2, gp=-2 (i=1,...,k),
[ q l-¢q

O1=(q115--+» Gr1) Q,=(q12, --+» Qk2)- (2.11)

™~

q=

I

Conversely
Pi1=4q4qi1, Pi=1-9)qx (i=1,...,k),
N=qQ;+(1-9)Q,. (2.12)
With the reparametrization (2.11) the likelihood is given by
k
L=gn(1-qg)"]] g (2.13)
i=1
Again, by Lemma 1, to consider (2.10) a priori is equivalent to considering the
following set of conditions:
g1 Q11 Q,, q~B(a,a,),

O ~ Dy oees Q1 )s Q. ~D(ay3, ..., %3), (2.14)

where a.;= Y, a; (J=1,2).
By matching (2.14) with (2.13), we obtain the posterior distribution which is
defined by the conditions

qlLI Q110 | X, q|X~q|n~B(a,+n,a,+n),
O\ | X~D(ay +xy, ..., 0 + X)),

Q) | X~ 0y ~D(ayp, -, ) (2.15)
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Again, p| X is distributed as Dirichlet if and only if n,=0. It is, however, a
mixture of Dirichlet distributions and

P11y Pkt (1= @) | X~ Dy +Xp, ..oy Oy + X1, @y + 1),

As before, we might consider a conjugate family of distributions by taking = a.,
for ., in (2.14). Other important types of mixtures of Dirichlet distributions are
considered by I.J. Good (1967,76) and J.F. Crook & I.J. Good (1980).

The Bayes estimator for the parameter of interest 7= (11, ..., I1;), analogous to
(2.7), has the following form:

1
a+n

N=E{Il|X}= [y, ..., )+ XM] (2.16)
where M is a (k+ 1) X k-matrix with the (k+ 1)th row being (a5, ..., @)/, the
diagonal elements being the unity, and the remaining elements being zero.

The next section deals with the study of the distribution of the data X. The
covariance matrix of /7 is presented at the end of the section.

3. The Dirichlet-Multinomial distribution: properties

When the discrete data follow the Multinomial model, the family of Dirichlet
distributions is widely used by Bayesians since it is a conjugate family large
enough to accommodate various shades of prior opinion. The study of the mixture
of Multinomial distributions by a Dirichlet distribution therefore becomes relevant
because the (marginal) distribution of the data is then a mixture of this kind.
Generalizing the definition of the Beta-Binomial (Ferguson [1967]) this mixture is
called here the Dirichlet-Multinomial distribution. More specifically, for k=2, let
x=(xy,...,X;) be a nonnegative integer random vector such that ¥7_,x;=n is fixed,
and let p=(py, ..., py) be a nonnegative real random vector with Zf»‘zlp,= 1.

Definition. If p~D(ay,...,) and x| p~M(n;p), then the distribution of x is
called Dirichlet-Multinomial (DM) with parameter (n;ay,...,q;), and we write
x~DM(n; ay,...,a). When k=2, in place of (x|,x;)~DM(n;a,, o), we write
x; ~BB(n; oy, @) to indicate that x, is distributed as Beta-Binomial.

[t is easy to check that the probability function (p.f.) associated with the DM
distribution is given by

n! (@) & I+ x;)
Ta+n)izi x' T(e;)’

Sx)= (3.1

k
where o= }/-Q;.

Some of the important properties of the DM distributions are given below. Let
X=(xy,...,xx)~DM(n; ay, ..., ).
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Proposition 1. If (i},...,i) is a permutation of (1,...,k), then (x,-],...,x,-k)~
DM(n;a,-l,...,a,»k).

Proposition 2. If me{1,2,...,k} is fixed, then for f= Y. a;

m

<x,,...,xm,n— ¥ x,->~DM(n;a,,...,a,,,,aaﬂ),

i=1

and

m

n=Y x;~BB(;f,a-p).

These two results are immediate consequences of analogous properties of the
Multinomial and the Dirichlet distributions.

Proposition 3. For m and n, defined as above, we have that

(XI’“'9XhJ |nlA'I)h4(nl;ala”')a})'

Proof. Note that the conditional probability function of (xi, ..., X,,) | #; is obtained
by dividing the p.f. of (x, ..., X, n—n;) by the p.f. of n;, which is the p.f. of a
DM(n; ay, ..., o). [

The result we present next is an important characterization of the DM distribu-
tion which will be used in the sequel.

Let (x,...,Xxx) be a nonnegative integer random vector with Zf-‘zlx,:n fixed.
Choose an integer me {2, ...,k — 1}, and denote n; = ¥/ | x; with n,=n—n;. Consi-
der now the following set of conditions:

15 eees X)) LL K 15 +o05 X) | 1 (3.2)(0)
X1y -eerXm) | R ~DM(ny; ay, ..., @), ..
s 13 o0sXk) | 713~ DML @y 1 oo 1), (3.2)(in)
and
n,~BB <n; Yoa,a- Y a,~>. (3.2)(iii)
i=1 i=1

Theorem 1. The above set of conditions (3.2) are necessary and sufficient to have

(X1, ..y X)) ~DM(n; oy, ..., ). @iv)

Proof. By Propositions 1, 2, and 3, (iv) = (ii) and (iii). To prove the remaining
implications we need only note that (3.1) may be factored as

195



D. Basu, C.A. de B. Pereira / Bayesian analysis of categorical data 353

n!I'(a) I"(ﬂ+n1)1“(a—ﬂ+n2)}
Fa+n) n!n' (BT (a—pf)

[mind) f ovxd) (it * Taex)
I:r(ﬁ‘f'ﬂ]) i=1 x;!' I'(a;) F((x—ﬂ+n2) i=m+1 x,—!F(a,—)

Jx)= [

where, as before, o= Zf—;la,-, and B= Y/ ,a;. The first factor is the p.f. of a
BB(n; S, a — ), the second is the p.f. of a DM(n;; @, , 1, ..., @), and the third is the
p.f.of a DM(ny; iy -osy). U

Example. Recalling the Bayes estimator /7, presented in (2.7), we notice that
(x1,X2) LL (31, »2) | my, and then y; | X~y | ny~BB(ny; @y, @y;) which implies (see
(3.3) below) that E{y, | X} =E{y, | ny} = ny(a5/a.5).

An interesting property of the DM distribution is given below where we consider
the finite sequence (zy, ..., 2,) with z;=¥/_,x; =1, ..., k). Clearly, z,=x,, z,,=n,,
and g, =n.

Corollary. [f (x,...,xx)~DM(n; a),...,a), then (2, ...,z;) forms a Markov chain.

It is intuitive that we might give a characterization of the DM distribution in terms
of (zy,...,2¢). This, however, would go beyond our needs.

To present the mean vector and the covariance matrix of the DM distribution we
introduce the vector ¢ =(«, ..., &), and the matrix

@ 0 0
0 oy - 0

0 0o .- (V7"

From Proposition 1 and 2, we notice that x,~BB(n; ¢, a—¢a;), and x,+x;~
BB(n; a;+ aj,a—a;—a;) for i, j=1,...,k with i#/. From easy computations when
using the definition of BB we have that

a.
E{x,-}=n—',
a
a,-z} a+n

Var{x;} = [a,—— —n,
a]ala+1)

3.3)

(a;+ aj)z} a+n

Var{x,+xj}=[a,-+aj— o a(a+1)n

=Var{x;} + Var{x;} + 2cov {x;,x; }.

From this last equation, it follows that
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o a+n
cov {x;,x;} =——1 n.
a ala+1)

Finally, the mean vector and the covariance matrix are given by

a+n
a(a+1)

E{x} =%a, Cov{x}= [%—La’a] n

a

where a’ is the transpose of a.
The data vector X =(x, ..., X, 12), for the nonresponse data presented in Section
2, follows the DM model; that is, X ~DM(n; a4, ..., &%, @.,). In this case

az(allr'“raklsa'Z)’ o = ' . (3.4)

0 0 .0 a

The mean vector and the covariance matrix for /7, the Bayes estimator given by
(2.16) are

E{IT} =$[(a,., s O )+ E{XIM],

) 1 \2 3.5)
Cov{ll} = <——> M’ Cov{X}M.
a+n
Using (3.4), we have that
- 1
E{ll}=—(a;,...,a;),
a
oy 0 1
M M= : +a—(a123 "'7ak2)’(a127 ceey akZ)’
0 e Qg -2
1 ’ ’ l ’
—;M a aM=;(a1.,...,ak.) (s ..y Q)
which imply
2
- n ap 1
Var{ll;}} =———— | + 2 ——0a? |,
UL a(a+1)(a+n) [ ", _—
(3.6)
PN n o O 1
Cov{IT;, IT;} = 2702 _ —g.a;
ovilL, IT;} a(a+1)(a+n) [ o, e %
fori,j=1,...,k and i#j.
In the particular case where a;=---=q,=1, the probability function is f(x)=
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("*»"")~! and this corresponds to the Bose—Einstein statistic in Statistical
Mechanics. See Feller (1968) for additional discussion.

4. The DM distribution: a natural family of priors for finite population studies

A sample of fixed size 7 is taken from a population of finite size N which is parti-
tioned in k<N categories. The category frequency counts are represented by
0y, ...,0, with Y5 10;=N. From the sample, an inference about (6, ...,6;) is
required. Corresponding to each 6; (i=1, ..., k), x; is the sample frequency count of
the i-th category, where Zlex,-zn.

We restrict the choice of the prior distribution for @ to the family of DM distribu-
tions. Given the sample x = (x|, ..., x;), we want to derive the posterior distribution
of §—x=(6,—xy, ..., 6k —x;), the composition of the unsampled part of the popula-
tion. In order to reach this goal, we use only intuitive arguments since an algebraic
analysis, besides being tedious (albeit easy), would bury the beauty of the argument.

Let e, =(1,0,...,0),...,e,=(0,...,0,1) be the standard orthonormal basis for R*.
To each unit j (j=1,...,N) of the population %, we associate an incidence vector Vi
which is equal to e; if the category of j is ¢;. More specifically, let # = {1,...,N} be
an enumeration of the population units. Associated with Zare the incidence vectors
Y1, .-+, ¥n described above. The unknown vector is 8= (6, ..., 0;) = Z’j\':,yj. We are
considering the case where the sample selection is noninformative. That is, the
selection of the n units (sample) from # is based only on the labels 1, ..., N, which
are themselves uninformative about the incidence vectors y,, ..., yn.

A natural way to introduce the prior model §~ DM(N; a, ..., o) is to consider a
random vector p=(py, ..., px) ~D(a, ..., ;) and to stipulate that for j=1,...,N

yi|p~M(1;p) and y, 11---1lyy|p.

In other words, given p the y;’s are i.i.d. with common distribution M(1; p). Since
(15---,¥n) is an exchangable finite sequence, without loss of generality we can
consider our sampled items as being the first » population items, say {1, 2; oyt }
Now, the sample is represented by the vector x= ¥/, y;, and the unknown quantity
of interest is the vector § —x= Z?_/:"+1yi.

In terms of the pseudo parameter p we then have, a priori, the following:

pP~D(ay,...,q), (4.1)()
x| p~M(n; p), (4.1)(ii)
x~DM(n; ay, ..., o), (4.1)(iii)
(0-x) | p~M©N-n; p), (4.1)(iv)
(0—x)~DMWN-n;ay,..., o), “4.1)(v)
(0—x)1x| p, (4.1)(vi)
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6| p~M(N; p). (4.1)(vii)

The result below is useful to our discussion.

Lemma 2. If two independent random vectors X, and Y are such that X ~M(n,; p)
and Y ~M(ny; p), then the conditional distribution of X | X + Y is the Multivariate
Hypergeometric with parameter (n, + ny,n;, X+ Y); that is,

X | X+ Y“'H(ﬂ] +n2,n,,X+ Y)
(Note that this distribution does not depend on the value of p.)

The following conclusion based on (4.1) and Lemma 2 is important since it
defines the likelihood function:

x| (6, p)~x|60~H(N,n,0) 4.2)
From the Bayesian analysis of the multinomial case, we recall that
P|x~D(a;+xy, ..., q+ X¢).

On the other hand we notice that the conditional distribution of (68— x) | x may be
viewed as a composition of the distribution of (8—x) | p~(8—x) | (p,x) (see (4.1))
by the distribution of p | x. Now, from the definition of the DM distribution, we have
that (6—x) | x~DM(N-n;a;+xy,...,a,+x;). This is the main result of this
section and may be summarized as:

Theorem 2. For the finite population sampling situation described, if 6~
DM(N; ay, ...,ax) a priori, then (0—x)lx~DM(N—n;a1+’x1,...,ak+xk) a pos-
teriori.

The next section is devoted to the nonresponse problem in finite populations.

S. Nonresponse: the Multivariate Hypergeometric model

The data for the nonresponse problem is presented in the (k x 2)-tabular form as
in (2.7). Instead of (1.4), the population parameters have the following representa-
tion:

R R’

Al 611 012 61
A2 921 022 92

T : CRY
Ak b b2 Ok
v N—-y N
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Now, the parameter of interest is #=(4,,..., 6;), and the likelihood may be

witien.as GG GG
00

Suppose that, a priori, a DM distribution for §=(0,,, ..., 6y, 612, ..., b;>) is consi-
dered; that is, a priori

(5.2)

0~DM(N; a1, ..., k1, Qi2y -..y C2). (5.3)
An additional notation is introduced:
0,=(6\1,...,6)) and 6,=(6y,..., b2).

Recall that 8= 6, + 6, is the parameter of interest, and that X = (x,, ..., X, n,) is the
data vector which may also be represented in the slightly abbreviated form
Xx=(xy,...,x;). Let

k
a;= ‘_Zl o (=12, a=a+a, (=1,..,k),
and a=Y ¥ a;.

Writing the parameters in the extended form (v, 6,, 6,), it is convenient to describe
the prior (5.3) in the following equivalent form (see Theorem 1):

w~BB(N; a.,a2), (5.4)()
0, | v ~DM(y; oy, ..., Qxy),
5.4)(ii
6, | y ~DM(N - y; a3, ..., &%2), (5.4)()
and
6,116, |y (5.4)(iii)

The theorem presented below is the main result of this section. It allows a simple
derivation of the Bayes estimator.

Theorem 3. The posterior distribution derived from the Bayes operation, when
(5.2) is the likelihood and (5.4) defines the prior, is given by the following set of
conditions:

(w—n) | X~(y—ny)|n~BB(N=-n;a +n,a,+n,y), (5.5)0)
(ﬂl—x)|(W:X)~DM(W—”1;0(11+X1,---,0!k1+xk), s
5.5)(ii)’
0| (v, X)~6,|y, (5.5)(i1)
and
6,116, | (v, X) (5.5)Gii)’
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Proof. The second condition of (ii)’ follows from the fact that the likelihood does
not depend on 6, when y is known. This fact together with the prior condition (iii),
implies (iii)’.

To prove (i)’ -and the first condition of (ii)’ we consider (as in Section 2) the
invisible nonresponse sample frequency counts, say y=(y,, ..., ¥). If we had full
response, the data would have been represented by (x, y). From Theorems 1 and 2
we have that

w—n| () ~BB(N=n;a,+n,a,+ny), (@)
X[ (¥, X, ) ~DM(y —ny; a1 + X1, ..., Gy +X2). (b)

From (a) and (b) it follows that (v —n,) | (x,)~(w—n,) | n;, and that (6, —x) |
(w,x, )~ (0, —x) | (w, X) which imply (i)’ and the first condition of (ii)’ respecti-
vely. 0O

Note that we showed above that y 11 X | n;; that is, n, is partially Bayes sufficient
to predict . See Basu (1977) for a more complete discussion of this concept.

As in the multinomial case, the posterior (5.5) does not define a distribution in the
same class as the prior was chosen from; that is, (5.5) does not define a DM distri-
bution. It is easy to check, however, that

(61— X1 eevs Okt =X, N— W — 1)
~DM(N=n;ay +xy,...,0 + X, 00+ 13).

A more complete class might be considered by taking in (5.4) a f=a., for a., in (i).
From the posterior (5.5) we obtain the following results:

a,+n

E{y—n | X}=(N-n——=,

a+n
E{N-y|X}=n+(N-nZ2* %
a+n
Q; +x,~
E{6;—x; | (v, X)} = (v —n))—L—=L,
o+ n;

E{0, | (W, X)}=E{6, | w}=(N- w)%
2

Using now the properties of conditional expectation we have the Bayes estimators

9i=E{9i|X}=E{9i1+912|X}=E{9i1 | X}+E{6;,| X}

—x;+ "‘”:"'E{w m|X}+ 22 2ZE(N-y|X)
a.+n
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As in (2.15), the Bayes estimator of the parameter of interest 8= 6, + 6, is given
by:
a+N N-n
+

G=E{0|X}= +nXM -
o ag=+n

(al,, ...,ak.).

Using the results (3.4), and (3.5) we finally have:

. N a5 a+N\?
E{0}=—(ay,...,a;), Cov{f}= M’'Covi{X}M,
(0= @), Covi(fy=(T00) MrCov(x)
which implies that
. n(a+N)? Q0 0.0
COV{&[; ej}z ( "'_) <U ,’1+ 2 2__.“L>, (5.6)
(a+n)(a+1a a5 o

where J;; is the Kronecker delta, and Var {6} =Cov {6, 6;}.

6. Final remarks

(i) There are many follow-up techniques used to obtain response among some of
the n, units that have not responded initially. For example, from the #, nonrespon-
dents in our sample, we select a subsample of size n, <n, and offer an incentive to
those who now would respond. In that way, information about Q, in (2.14) or about
0 | v in (5.4) might be improved. See Kaufman and King (1973), and Singh and
Sedransk (1978) for a more specific discussion on this two stage sampling.

(ii) Although we have restricted ourselves to the nonresponse problem, it should
be understood that our method applies equally well to the general problem of
categorical data with missing entries. Consider, for instance, the categorical data
where all but the first n cell entry data are missing. By using Lemma 1 for the multi-
nomial case or Theorem 1 for the hypergeometric case, we would, analogously to
(2.6) or (5.4), obtain the posterior distribution for the cell parameters.

(iii) One word about the relevance of the variance of Bayes estimators as presen-
ted in (3.6) and (5.6). Note that we are not talking about conditional variances (with
the parameter fixed) but the variance of the marginal distribution of the estimator.
Consider the k=2 multinomial case for instance. It is clear that

Var{I1,} =Var{I1,} - E{Var{IT, | X} };

that is, the variance of I7, may be regarded as the expected amount of uncertainty
removed, when uncertainty (De Groot (1962)) about the parameter is measured by
its variance. Thus, the variance of the Bayes estimator is a kind of a measure of the
amount of information in the experiment. The larger the variance of I7; is, the
better off we are!
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The variance of the Bayes estimator may be used (see Appendix) to study the
amount of information lost when the nonresponse portion of the sample is neglected
as in many classical procedures.

(iv) We notice that, there are many important applications of the DM class of
distributions. For example, in Quality Control [see A. Hald (1960,78)] and in
Statistical Prediction [see J. Aitchison & I.R. Dunsmore (1975)].

(v) A special case of the DM distribution is considered in I.J. Good (1965, p. 36).
Another characterization of this distribution in terms of mixtures of Negative-
Binomial distributions can be found in D. Basu & C.A. de B. Pereira (1980).

(vi) Finally, we would like to notice that the Bayes estimators discussed in this
paper are not consistent in the classical sense. That is, E{(I1;— IT;))* | IT} does not
converge to zero as n—oo.

Appendix

The usual non-Bayesian methods for analyzing data with nonresponse do not use
the nonresponse portion of the sample. The likelihood in this case is defined by the
conditional probability of x=(xy,...,Xxy), the response vector, given n;= Zf-; 1Xi.
For instance, in the multinomial case this ‘conditional’ likelihood is L.= [[¥_,g;}.
It is intuitive that, by considering this reduction, one is not using the full infor-
mation (about the parameter of interest) contained in the data. In order to clarify
this point we define a reasonable measure of information and compute, in a particu-
lar case, its values for both the original and the conditional model.

Consider the Multinomial model for the case of two categories (k=2). Let the
prior be the uniform distribution; that is, @;; =y =a;;=0a,=1. By using the
variance (see Section 6, (iii)) as the uncertainty function, we define the measure of
information as

I(data)=(Var {I1,})~! Var { E{I1, | data}}.

Considering the original likelihood, the information measure is given by

n
IN=I=3a
since
— (o0 -! Tl 0
Var[/1,}=(20)"  and Var[Hl]—40(4+n).

The posterior distribution under the conditional model (and same prior) is
defined by the following conditions:

q'~B12,2), gu~B(l+x,1+x),
gi~B(,1),  q'llgj 1lg,.
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The Bayesian estimator in this case is given by

REE T

’
2+ n;
and the respective measure of information is

1+x1}
I(x|n)=I.=5Var{——¢.
( | 1) (& 12_+’”

Relative to the uniform prior, the distribution of (x;,x;,n,) is DM(n; 1, 1,2).
Considering the particular case of »=4 we obtain the following results:

I=4, =3 I_IIC:O.27.

Here we might say that if an inference about 77, is required, then 27% of the infor-
mation is expected to be lost (relatively) when the nonresponse portion is neglected.

Note that it is possible to have an analogous analysis for the Hypergeometric
model. However, in addition to the value of n, we would have to fix a value for N,
the population size. Here, the conditional model is given by

w= () 1)

For particular choices of N, the relative loss of information would appear to be
more extreme.
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