«'D

[N

Probability in the Engineering and Informational Sciences, 1, 1987, 225-236. Printed in the U.S.A.

EXACT MAXIMUM LIKELIHOOD
ESTIMATE OF A FINITE
POPULATION SIZE

CAPTURE/RECAPTURE SEQUENTIAL
SAMPLE DATA

JOSE GALVAO LEITE, JORGE OISHI, AND
CARLOS ALBERTO DE BRAGANCA PEREIRA

IME — Universidade de Sdo Paulo
C.P. 20570—-01498
Sao Paulo, Brazil

Using data obtained by the general capture/recapture sequential sampling
process, an exact analytical expression for the maximum likelihood (ML) esti-
mate of the population size, o, is introduced. As a consequence, it is shown
that bounded likelihood functions have at most two maxima. For the simple
one-by-one case the ML estimate is unique.

1. INTRODUCTION

The objective of this paper is to introduce a closed analytical expression for the
maximum likelihood (ML) estimate of the size, N, of a finite (and closed) popu-
lation when the data are obtained by the capture/recapture sequential sampling
process. Inferences about N based on data obtained by special cases of this
sampling process were considered by many authors (see for instance Craig [2],
Goodman [7], Chapman [1], Lewontin and Prout [15], Darroch [4,5], Jolly
[12], Seber {19], Darling and Robbins [3], Samuel [18], Freeman [8], Robson
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{17}, and Pollock, Hines, and Nichols [16]). For a more accurate reference list,
see Seber [21a]. The techniques used in the present paper, however, were sug-
gested by a related problem described in Good [6, p. 73]. The sampling design
for the capture/recapture sequential process and its sampling probability dis-
tribution are described next. For complete details see Leite & Pereira [14].

Consider a population of finite size, N (€ IN* = {0,1,...)), such that
during the study time it changes neither in size nor in form; that is, the popu-
lation is closed during the study time. From this population, £ (>1) random
samples (without replacement) are sequentially selected from the population.
Each of these samples is returned back to the population before the next is
selected. To obtain the relevant data to estimate N, the following steps are per-
formed:

i. The first random sample of size m, (=1) is drawn, without replace-
ment. After the sample units are marked they are returned to the pop-
ulation and the number m; = U, is recorded.

ii. The jth (j > 1) random sample of size m; (=1) is drawn, without
replacement. The sample units marked in earlier selected samples are
immediately returned to the population. The remaining U; unmarked
sample units are returned after being marked. The numbers m; and U;
are recorded.

After the k samples have been obtained, the data D, = (U,,...,U;) are
observed. Note that the statistic 7, = (U, + - -+ + Uy) is the number of dis-
tinct population units selected in the whole sampling process. Leite and Pereira
[14] show that this statistic is sufficient and that the smallest factor of the likeli-
hood function that depends on the value of N, the Likelihood Kernel, which
is a minimal sufficient statistic (Zacks [22]), is given by:

k N -1
K(N,t) = I(N) [(N— ' (mA )] N1,
J

Jj=1

where ¢ is the observed value of 7 and 7,(-) is the indicator function of IN7 =
{n € IN*; n = t}. The probability distribution of 7} (Johnson and Kotz [10]
and Leite and Pereira [14]) is given by:

J=1 \Mm;

¢ k :
P(T, = t|N} =K(N,t)lc(t)§){(—l)l—i[i!(f—i)!]_ln ( ! )]

where I¢(¢) is the indicator function of the set

J=1

k
C= {xe IN*; max{m;,...,my} =x=< min[N,E mj}}

evaluated at point £.
In the following sections, a detailed study of X (V,¢), as a function of N,
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is presented in order to obtain the ML estimates of N. To illustrate, numeri-
cal results are presented.

2. MAIN RESULTS

For convenience of notation, although N is a finite nonnegative integer, we con-
sider that oo is also a point of IN*; that is N* = {0,1,...,%]. For an observed
point ¢ of T, an ML estimate of N is a point N € IN* that maximizes the
function K (-, ¢). The following simple result introduces the ML estimate for
the two extreme cases.

Proposition 1: If t = max{m,,...,m,}, the minimum possible value of ¢,
then N=t¢t. If t =m + --- + my, the maximum possible value of ¢, then
N = o,

Proor: (i) Without any loss of generality, let ¢t = m, = max{m,,...,m,}.
Then,

k N —1
K(N,m|)=1m.(N){H( )] m!
j=2 \ ;

has its maximum at point N = m,, the minimum possible value of N. (ii) Let
t=s=m + --- + my. Hence,

covn=so{fym |1 - D][1 T ()]

Jj=1 J=1 i=0

Note also that for any fixed & = 2 and for any real numbers x;, 0 < x; < 1 and
JE [i,...,k],

k k
[Ma-x>1-Yx.
J=1 Jj=1

Consequently, for all N = s,

K(N+1,5) [ _m; s t
K(N.9) ‘{,13.[1 ~+1m‘ N+1] > b

concluding the proof. |

Let m = max{m,,...,m;} and, as above, s =m; + --- + m;. We con-
sider now the case where m < ¢t < s. Forall N€ N} = {n € IN*; n = t}, define

the ratio
KN+ Ly _[&[, . m I
K(N,1) —{B[l N+1]}[1 N+l] ’

and consider the function

k
filx) = (1 = x)~'TT (1 — xm),
j=I
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defined in 0 < x < 1/¢. This function is continuous in [0,1/¢), £,(0) = 1,
Si(x) = o0 as xt1/¢, and if N € N7,

f,( 1 )=K(N+1,t). @

N+1 K(N,t)
The behavior of f, is described by the following result:

LEMMA 2: For m < t <s, the equation f,(x) = 1 has a unique positive solution
Xo in the open interval (0,1/t). Also, fi(x) < 1if0 < x < x and f,(x) > 1 if
Xo <x< I/t

Proor: Let f; = g/h, where g and 4, are two functions defined as:
k
g(x) =T (1 = xm;) and A, (x) = 1 — xt.
J=1 .

The first and second derivatives of g are, respectively,

P k
g =Y (-mpIl (1 —xm) <0
=t iz
and
kK [k

k
g"(x) =Y , (i) IT a —xmf)] > 0.

=1 .= =1
#i Teig

Hence, g(-) is a decreasing convex continuous function. Also, A,(x) is a
decreasing linear function, g(0) = 4,(0) = 1, g(1/¢) > 0, and A,(1/t) = 0.
(Figure 1 illustrates these two functions for a particular case.) The derivative

&
of (h, — g) evaluated at the origin is #/(0) — g'(0) = [—t + ) mj] > 0.
J=l
Consequently, there is a positive real number, 8, such that A/ (x) — g’(x) > 0
for all x in the interval [0,8) and, from the mean value theorem, #,(x) > g(x)

for all x in the open interval (0,8). The conclusion is that there is a unique
point, xp, belonging to the open interval (0,1/¢), such that

g(x) = h(xo),
g(x) < h(x) if x € (0,x,), and
g(x) > h(x)if x € (x,1/1).

Since f; is the restriction of g/h, to the interval [0,1/¢), the proof is con-
cluded. u

The main result of the present paper is stated next. It introduces the gen-
eral form of the ML estimate and highlights the region of unicity of such an
estimate.
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1.00800

.0893

o .8042 .0050

Figure 1. Functions g and 4, for the case M = (150, 40, 50, 60, 30)
and ¢ = 200.

Let M = (m,,m,,...,my) be a vector composed of k (>1) sample sizes
defined by the capture/recapture sequential sampling design, ¢ be the observed
value of 7,

m=max{m,,...,m}, s=m, + --- + mg, and

k
n, min{n € IN*; H (t+n—-—m)<n(t+ n)""}.

J=1

THEOREM 3: An ML estimate of N, N, exists and is defined as

¢ ift=m
N=3 t+n -1 ifm<it<s
o ift=s.

Also, this estimate is unique except when

k
IHG+n—m—1)=(n-1)(+n - 1),
j=1

in which case the only two possible estimates are (t + n, — 1) and (¢ + n,—2).
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Proor: (i) From Proposition 1, (f=m} = (N=t} and [t =5} = [N = x}.
(ii) Let m < # < 5. From Lemma 2, we have that an, € IN*, ny > 1, such that,
for n € N*,

<1 if n=ny
f,( ! ) =1 ifn=ny—1
>1 ifn<ng—1.

1
Hence, ny = min {n € IN%; f’(t-i-_n) < l}. That is, ny = n, where n, is de-
k

1
fined above. Note that f'(t_-l-_n) < 1is equivalent to [T (+ + n — m;) <
Jj=1

n(t + n)*~'. The following facts conclude the proof:
(a) If

k
ITG+n—1=m)>(n—1)(+n -1,
Jj=1

then

1 <1 ifn=n,
‘f;( ) i
t+n > 1 ifn<n,—1.

Consequently, from Eq. (1), we conclude that
K(t+n-1,1)>K({+n—-2,t)>--->K(t1t) and
Kit+n-1,0>K(t+n,0)>K({t+n+1,1)>---.

That is, N = (¢ + n, — 1) is the only ML estimate of N.

(b) If

P
[He+n-1-m)=(-1){t+n - 1),

=

then
<l if n=n,

1 .
f'(t+n) =1 ifn=n -1

>1 ifn=sn - 2.
From Eq. (1) we conclude that
K(t+n-1,0)=K(t+n—-2,t)>--->K(1t) and
K(t+n—-1,0)>K({t+n,y>K({t+n+1,t)>---.
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Thatis, N= (¢t + n, — 1) and N’ = ¢ + n, — 2 are the only two ML estimates
of N. ]

Figure 2 presents the function f; for the case M = (m,,...,ms) = (150,
40,50,60,30) and ¢ = 200. For this, the unique ML estimate is N = 236. Ta-
ble 1 presents some numerical examples in order to give an idea of the ML esti-
mate behavior.

3. SPECIAL CASES

In this section we consider special cases of sample designs. We study in detail
the one-by-one case; that is, m; = - -m; = 1.

As direct consequences of Theorem 3, we present the following results
which are ways of checking the unicity of the ML estimate.

COROLLARY 4: In Theorem 3 let k =2 and N, = mymy(m, + my — )"\ If
N, € IN*, then the only two ML estimates of N are N, and N, — 1. If N, &
IN*, then [N,], the larger integer not superior to N,, is the unique ML esti-
mate of N.

1.560

1.800

I -4 I O

.568 : .
%) .8028 .80942 .0059

Ficure 2. Function f, for the case M = (150, 40, 50, 60, 30) and ¢ =
200.
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TasLE 1. Examples of ML Estimates

M t ML Estimates

62 63

(40,60) 80 119 & 120
10 12
(1,5,8) 11 16
12 25
90 92
120 152

(40,60, 80) 140 239 & 240
179 10381
6 6
7 7
(3!3’4?4’5) 10 N ll
17 67
18 139
60 61
80 95

(15,20,25,30,50) 98 149 & 150
120 347
139 7449

COROLLARY 5: In Theorem 3 let k =3, a = mymyms, b = (mymy + mym; +
m2m3)s c=(m; + m,+m;—1t), and N:; = 2a[b - (bz - 40(')1/2]_'. I_fﬁ:q €
IN*, then the only two ML estimates of N are N; and N5 — 1. If N5 & IN*, then
[Ns] is the unique ML estimate of N.

To obtain similar results for X > 3 one needs to handle complicated alge-
braic equations of degree k¥ — 1. However, in the case of equal sample sizes,

m, = ... = m,, we have the following result.
COROLLARY 6: Let {n),ny} C IN* with ny # 0. If
my= - =my =28 gnd t = (1 — [1 — 27"]kjok+mtnz

then the only two ML estimates are N = 2ktm+m gnd N — 1,

From Theorem 3, the proofs of these results are straightforward. Table 2
presents some numerical examples for the case of equal sample sizes. These
examples show that the conditions of Corollary 6 are not necessary.

The most important special case of sampling design is the one-by-one
sequential sampling. That is, m; = m, = --- = m; = 1. We end this section
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TasLE 2. Examples of ML Estimates with Equal Sample Sizes

k m t ML Estimates
2 2 3 3&4

2 3 5 6

2 4 6 7&8

3 4 7 7&8

3 4 9 14

4 6 11 11

4 16 30 31 &32
4 64 175 255 & 256
5 32 62 63 & 64
6 2 6 6
10 15 76 91

showing the unicity of the ML estimate for this sampling design. This is not
in agreement with some other authors (Samuel [18]) who believe that there may
exist more than one ML estimate in this case.

From Theorem 3 we know that, in the one-by-one case, to obtain two ML
estimates when 1 < ¢ < k we should have

(t+n,—2Y=(n,—-1)(t+n — 1)k,
Let x be the integer ¢ + n, — 1. The above equation is equivalent to
k-1
(x—1f=(x—-t)x*lor (t—-k)x*1+ ) (l:) (=1)x* = (=1
i=2
Note also that this last expression is equivalent to
k—1 _1yk—)
(1= x4 1, (k) (~nyixk-int = L2
i=2 1 X

Finally, since x is an integer, the left-hand side of this equation must also be
an integer. This is absurd because the right-hand side cannot be an integer num-
ber since x > ¢ > 1. The conclusion is that the above equation does not have
an integer solution and the following result holds.

THEOREM 7: For the one-by-one sequential sampling, there exists a unique ML
estimate defined by

! ift=1
N=4 t+n-1 ifl<t<k
o if t =k,
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where
n,=minfn € N*; (t +n— 1) < n(t + n)* ).

To illustrate the behavior of the ML estimates Table 3 introduces some
numerical examples.

4. COMMENTS AND CONCLUSION

Inferences about population size have been the object of some recent papers,
see for instance Isaki {9]. However, they are usually restricted to the case of
k = 2. We believe that, with the simple expression of the ML estimator obtained
from N (with T} in the place of ¢), some of this work can be extended to the
general case of k = 2.

Before using N one needs to observe the following list of limitations:

i. The parameter space IN; changes with the observed value ¢ of T}.

ii. The random variables U;, i = 1,...,k, that form the data, D,, are
not independent and identically distributed. In fact, they are not even
exchangeable.

iii. The ML estimator defined from N has no finite moments.

iv. When either event [T, = m} or [T; = s) occurs the value of N is not
related to the value of k. For instance, let my = -+ =my = 1. If
{Tx = 1} (or {T; = k}) obtains, then {N =1} (or { N = o }) whether
k=2or k=2%,

TasLE 3. Examples of ML Estimates for the One-by-One
Sequential Sampling

t K
2 3 4 5 6 7 8 9 10 11 12
1 1 1 t 1 1 1 1 1 1 1 i
2 o 2 2 2 2 2 2 2 2 2 2
3 o 5 3 3 3 3 3 3 3 3
4 o 8 6 5 4 4 4 4 4
5 © 13 8 7 6 5 5 5
6 ® 19 11 9 8 7 7
7 o 25 15 12 10 9
8 o 33 19 15 12
9 o 42 24 18
10 ® 51 29
11 o 62
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Facts (i), (ii), and (iii) restrict the use of standard statistical procedures. The
use of Bayesian procedures may be the way to contour these problems since
they rely on the actual observed data rather than on the distributional prop-
erties of Dy or T;. In a subsequent note the authors intend to present a Bayes-
ian discussion for the present problem. To the best of our knowledge, Freeman
[8], Zacks [23], and Leite [13] are the available Bayesian references for the esti-
mation problem of N,

From a practical point of view, N = o is to be understood as a very large
number. Note that usually we are interested in the size of a population located
in a limited region which may accommodate a large but finite number of units.
Hence, with some little prior knowledge, one may easily figure out (with some
desired exaggeration) the maximum possible value of N. This number is tech-
nically represented here by c. Thus, in fact, we can say that the moments of
our estimator are very large but finite numbers. Restriction (iii) may then be
eliminated. However, by posing the problem in this manner, many of the well-
known asymptotical simplifier properties may not be easily adjusted to our
problem. Restrictions (i) and (ii) indicate that, to have all kinds of inferences
about N, one needs to perform a careful study of the distributional properties
of the sequence {7 }is-

The strongest restriction on N, in our opinion, is introduced by (iv). In
order to make the length & of the data vector be relevant when 7 = m or
T, = s, one needs to use prior knowledge.
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