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Statistical Assessment of Jointly Observed Screening Tests
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Summary

In this article, Lindley and Novick criteria of screening usefulness is applied to the statistical assess-
ment of jointly observed screening test. Posterior probabilities comparing screening sensitivities and
specificities, and posterior probability bounds to comparing screening predictive values are obtained.
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1. Introduction

Screening tests are aimed to identify individuals who are carriers of certain phy-
siologic conditions such as the presence of a genetic biomarker that may identify
subjects at increased cancer risk or the presence of an enzyme associated with
acute myocardial infarction. The clinical relevance of a screening algorithm is a
consequence of its ability to properly alter the management of the patient and of
its usefulness in anticipating the progress of the physiologic process.

In this article we consider the experimental design in which individuals are
jointly screened by two competing binary tests (generally called 77 and 73) and by
a reference or gold standard assessment rule D which determines (by definition)
the presence or absence of the physiologic condition of interest. For example,
when screening for liver metastasis the reference test my be an autopsy or any
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other invasive test such as a liver biopsy, whereas a liver scan and bilirubin assay
are typical screening (non-invasive) tests (LIND and SINGER, 1986). When screen-
ing for myocardial infarction, the reference test my be the serial creatine kinase-
MB enzyme assay, whereas a single enzyme assay and a specific electrocardio-
graphic response are competing screening test. The question of interest is the sta-
tistical comparison of the two competing screening tests 77 and 7,. In the next
section we introduce the necessary notation and assumptions, followed by a de-
scriptive assessment of the competing tests. Section 3 describes the Bayesian in-
ferential methods required to statistically compare the two screening tests. In Sec-
tion 4 we apply these methods to assess the relative performance of a rapid optical
immunoassay and a non-selective medium for the detection of lower genital tract
colonization by group B streptococcus (GBS) using a selective broth enhanced
culture as the reference or gold standard test.

Statistical methods to assess the usefulness (in the Lindley and Novick sense)
of independently observed screening tests have been described previously by ViIa-
NA and FAREWELL (1990, 1994). Recent applications to assess the screening useful-
ness of specific genotypes for lung cancer are described in REBBECK, VIANA, JOR-
DAN, WEBER, and ROGATKO (1996) and REBBECT, ROGATKO, and VIANA (1998).
Important contributions to the statistical assessment of screening tests include the
work of GASTWIRTH (1987) and JOHNSON and GASTWIRTH (1991). Our approach is
characterized by defining screening usefulness according to Lindely and Novick
criteria. This is defined in Section 2.1.

2. Models and Assumptions

Let pjx = P(D =i,T) =j, T, = k), i,j,k € {0,1}, indicate the underlying multi-
nomial  probabilities  associated  with the random joint  outcome
(D=i,T1 =j,T, = k). A screening outcome 7 = 1 suggests the presence of the
condition of interest and the outcome 7 = 0 suggests its absence. In contrast, the
reference outcome D = 1 determines the presence of the condition of interest and
the outcome D = 0 determines its absence. The corresponding observed frequen-
cies are denoted by x;; and the total number of joint observations is equal to N.
Following standard notation, let

T =p1.. = pioo +Pio1 +prio +pii1 =1 —po. (1)

indicate the marginal probability of condition D present. The marginal probabili-
ties of 71 and T, suggesting the presence (7' = 1) of condition D are indicated by
p.1. and p_, respectively. The corresponding screening sensitivities are the condi-
tional probabilities

n =PI =1|D=1)=""
P1..

m=P(T=1|D=1)=C

P1..
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whereas the corresponding specificities are denoted by

0, =P(T; =0|D=0) =22
po..
0, =P(T, =0|D=0) =222
po..

Similarly, the predictive values of a screening suggestive of condition D are repre-
sented by

J418
pippy=PD=1|T)=1) =

P

P11
pip,=PD=1|T,=1) =

P

whereas the predictive values of non-suggestive screening results are

pn; =PD=0|T,=0) = Poo.

po.
puony =P(D=0|T, =0) = Poo.

P.o

2.1 Screening usefulness

Equations relating sensitivity and specificity to pup and pun results follow from the
usual Bayes formula, and for that purpose it is convenient to express the resulting
probabilities in terms of the corresponding odds. The posterior odds O; on the pre-
sence of condition D when a suggestive (7" = 1) screening result is obtained is

n T
1-01-n’
which shows the dependence of O; on the (prior) odds I

0, =

T
on the presence of
—T

condition D. Its relation to the predictive value of a suggestive test result is given
by the equation pvp = O /(1 + Oy). Similarly, the posterior odds Oy on the pre-
sence of condition D when a non-suggestive screening result is observed is

1-m =

0 1-=n
The predictive value of a negative result is obtained from the relation
puon = 1/(1+ Oy).

LinDLEY and Novick (1981) argue that a screening test is indecisive until its
outcome is likely to properly change the actions associated with the odds O; on
the presence of condition D when a suggestive screening result is observed,
relative to the odds Oy on D when a non-suggestive test result is observed. A
comparison is therefore, made between O; and O, at any given value of the mar-

Oy =
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ginal prevalence 7. Since the odds of 1 to 1 is equivalent to 50% in probability, a
value of @; > 1 corresponds to more than 50% in probability and is necessary to
suggest a sequence of interventions seeking to confirm the presence of condition
D; conversely, a value of Oy < 1 is necessary to suggest an opposing course of
action. As pointed out by Sox (1990), p. 28, a screening test should be obtained
only when its outcome is likely to properly alter the management of the patient. In
this sense, a screening process with given sensitivity and specificity is properly
useful at those prevalence levels m such that

Oo Sfl <1<f2§01 (2.1)

holds true. Values of f; and f, may be selected to obtain more stringent criteria of
usefulness (VIANA and FAREWELL, 1994). For descriptive purposes, it is graphi-
cally convenient to express the criterion in terms of the (natural) logarithm of the
posterior odds. The interval R of prevalence levels for which (2.1) obtains is
called the proper range of the screening test. To express R, let
0 1-0
o=\ = ——
I=n Ul

indicate the likelihoods of condition absent (D = 0) relative to condition present
(D = 1) at each test outcome (T =0, T = 1), and define

U = min {Ag, M }, V =max {Ag, M }.

Then, the test’s proper region is given by

U |%
R=|—, —]. (2.2)
U+1"'V+1
Note that the 1+ 0 > 1 is sufficient to determine U = A; and V = Ay, and conse-
quently,

Y,
R_(k1+1’x0+1>' 23)

The additional notation has the advantage of suggesting the corresponding defini-
tion of the proper region when more than two test responses are necessary to
represent the screening method (VIANA, ROGATKO, and REBBECK 1998). Also note
that the condition 1+ 0 > 1 imposes a natural restriction to the underlying prob-
ability describing the association between test outcome and disease condition
(further discussed in Section 5). When 1+ 0 > 1 we say that the test has positive
dependence.

In addition to describing the range R of prevalence levels in which the process
is expected to properly screen the individuals, it is of interest to assess the test’s
log relative likelihood ratio H,

Hzmz, (2.4)
U
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which equals the height between the two (parallel) utility curves In O; () and
In Oy (7). Under positive dependence, however, H = In -0 Moreover, H does not

depend on the prevalence st and expresses the relative Wleighting of evidence in-
trinsic to the screening device [see also KAss and RAFTERY (1995)].

Any two tests’ log relative likelihood ratios H; and H, are monotonically re-
lated with their proper regions R; and R, in the sense that

R, CR =H, <H,.

The converse of (2.1) is not true. In fact, take any two proper regions R; and R,
such that neither Ry C R, or R, C R;. Then, because either H; < H, or H, < H;
(the real line together with < is a completely ordered set), the converse fails for
all such regions R and R;.

When R, C R; we say that tests 7} and 7, are comparable and that 7} is uni-
formly better than T5. It follows directly from definition (2.2) that a sufficient
condition for R, C R; under positive dependence (1, + 0, > 1) of Test 2 is
Ny =My, 01 = 0,

Lindley and Novick’s criterion is also applicable to the sensitivity and specifi-
city of a clinical trial [e.g., SACKS, CHALMERS, and SMITH (1983)] and to the ana-
lysis of case-control studies [e.g., MARSHALL (1988), ZELEN and PARKER (1986),
SCHLESSELMAN (1982), HALLSTROM and TROBAUGH (1985)].

3. Statistical Assessment

The starting point is the multinomial probability model for X;;, given the probabil-
ity pjx associated with the random joint outcome (D =i,T\ =j,T» = k). The
prior probability model naturally conjugated with the multinomial is the Dirichlet
model, with parameters oj. This is the multivariate extension of the Beta distribu-
tion, that is, the joint distribition of p; is proportional to
ik—1

[T P~ -

ijk
It then follows that, given the data x;, the posterior probabilities are also Dirichlet
probabilities, with parameter x; + k.

Proposition 3.1: Given the data,

P(n, > 1,) = P(Be(yi10,y101) = %), P(0; > 05) = P(Be(yo10,Y001) < %),

where Be(e, f) indicates a Beta random variable with parameters e and f. More-
over, the events 1, > 1, and 0; > 0, are independent.

Proof: From the definitions in Section 2 it follows that 1, > 1, is equivalent to
P1io = pio1- However,

Pi1o
P 2 pion < —=1. (3.1)
P1o1
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P110
Pi1o + Pioi
vito and yjo;. Consequently, the probability of 1, > 1, is the probability of
Be(y110,y101) > %, as proposed. Similarly, 0; > 0, is equivalent to pg10 < poo1, and
the proposed result follows from the fact that

Given the data, the posterior distribution of is Beta with parameters

poio < poor = P20 < 1. (3.2)
Poo1
The independence of the events 1, > 1, and 0; > 0, is obtained from the addi-
tional fact that the ratios Piio and poio in equations (3.1) and (2.1) above are ratios
P1o1 Poo1
of independent gamma random variables (representing the underlying Dirichlet
model) and consequently are also independent. O

Proposition 3.2: Given the data, P(pup; > pupz) > P(n; > n,) P(61 > 6,).
Proof: Let O(t) = t/(1 — t) indicate the odds transformation, so that
p1io + P11 pPiol + Pii
Olpvp1) =——F——, Opvp2) =—F—.
( ) Po1o + Poti (pup2) Poo1 + Poti
Therefore, because 1, > 1, < poio < poo1, and 0; > 0 < p119 > pio1, it follows
that
m =1, and 6; >0, — O(pupr) = O(pups),

so that the joint event E ={n, >m,,0; >0,} implies the event
F = {pup1 > pup,}. Therefore P(E) < P(F) and from the independence part of
Proposition 3.1, the proposed result obtains. O

Note that the events E and F are not equivalent. In fact, take p;;o = 0.1,
P11 = poio = 0.2, por1 = 0.01, pio1 = 0.3 and poo1 = 0.4. Then
O(pup1) = 1.42 > 1.21 = O(pvp,), whereas 0, > 0, and 1, < 1,.

Proposition 3.3: Given the data, P(pun; > puny) > P(n; > 1,) P(6; > 6,).
Proof: This is similar to the proof of Proposition 3.2 and follows from the fact that
O(pomy) _ Pooi +Pooo, O(pom) _ Poio + Pooo '
P1oo + Piol P100 + P11o 1
As a consequence of Propositions 3.2 and 3.3, we obtain
min {P(pvp1 = pupa), P(pum = punp)} = P(n; = my) P(61 > 6,) .
Proposition 3.4: Given the data, test 77 has positive dependence with posterior

probability P(Be(yoo.,Yo1. > Be(y10.,¥11.)), based on independent Beta distribu-
tions. Similarly, test 7, has positive dependence with posterior probability

P(Be(y0.0, yo1 > Be(y10, y1.1))-

Proof: By definition, test 7; has positive dependence when 1, 4+ 0; > 1, that is
O 1 o PP
1= po. ~ Di.
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Similarly, 75 has positive dependence when 1, + 0, > 1, or

O 1 o Po P

I=m, ™~ Po. ~ P
The proposed result follows by obtaining the required posterior marginal Beta
distributions and the fact that the corresponding sides of the inequalities above are
independently distributed.

4. Detection of Group B Streptococcus — An Example

The study reported by NGUYEN, GAUTHIER, MYLES, VIANA, and SCHRECKENBERGER
(1998) considered the relative performance of a rapid optical immunoassay
(shortly indicated here by quick strep — QS, or Test 1) and a non-selective med-
ium (Trypticase Soy Agar — shortly TSA, or Test 2) for the detection of lower
genital tract colonization by group B streptococcus (GBS) using a selective broth
(Lim broth) enhanced culture as the gold standard. The assessment of lower geni-
tal tract colonization with GBS is indicated, for example, when there is a history
of previous child with GBS neonatal sepsis. Infants born to GBS-colonized par-
turient could develop early-onset GBS disease, a leading cause of neonatal mor-
bidity and mortality. Prompt intrapartum treatment can significantly decrease ser-
ious GBS-related sequelae. The observed data consist of 513 women enrolled in
the year-long study. Each subject was screened by QS and TSA, in addition to the
Lim broth culture. Table 1 summarizes the observed joint data and descriptive
estimates of screening sensitivities, specificities and predictive values.

Table 1

Observed joint frequencies x;jx of QS (Ty), TSA (T>) and Lim broth culture (D) and corre-
sponding screening sensitivities, specificities and predictive values.

culture =i QS =j TSA =k Xijk
1 0 0 29
1 0 1 19
1 1 0 6
1 1 1 35
0 0 0 416
0 0 1 0
0 1 0 18
0 1 1 1
sensitivity 0.460 0.606
specificity 0.956 0.997

pup 0.683 0.981

pun 0.896 0.925




862 M. A. G. ViaNA, C. A. DE B. PErEIRA: Screening Tests

1 0 T T T T
8 )
B e T
E 0 ._/;,x e = S ]
g2
a I

-

g 5 /

Fig. 1. Estimated utility curve for
QS screening: R = (0.0872,0.6390),
H=291
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Figures 1 and 2 show the estimated utility curves for the two competing tests.
The wider proper region of the TSA method fully includes the proper region of
the QS method, thus suggesting the superiority of the TSA method. The proper
region of TSA (Test 2), following (2.2), ranges from 0.048 to 0.716, whereas the
proper region of the QS (Test 1) ranges from 0.087 to 0.639. The corresponding
log likelihood ratios are H, = 6.24 > H; = 2.91, thus reflecting the fact that
R, C R,. The statistical assessment of the two screening test includes the evalua-
tion of the posterior probability associated with the event R C R,. We adopt a
prior Dirichlet model with o, = 1/4, which weights the same total information as
a uniform beta prior model. First note, following Proposition 3.4 with
X00. = 416, x01. = 19,x19. = 48, x1;. = 41, that Test 1 has positive dependence with
posterior probability very close to one (about 0.9999, using expression (A.1) in
the Appendix). Under positive dependence, from definition (2.2), a sufficient con-
dition for Ry C R, is M, > M, 0, > 0,. From Table 1 and Proposition 3.1 we
obtain (again using expression (A.1) in the Appendix)

P(m, > m,) = 0.9963, P(6, > 0;) > 0.9999,
so that
P(Ry C R;) > 0.996.
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- Fig. 2. Estimated utility curve for
TSA screening: R = (0.0048,0.7167),
-1 L 1 t 1 H=0624
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Consequently, the TSA screening method is uniformly more useful than the QS
screening method with posterior probability greater than 0.99. From Proposition
3.2 we conclude that the same lower bound is valid for P(pup, > pup;) and for

P(puny > puny).

5. Discussion

In this paper we considered the statistical assessment of jointly observed screening
tests. The underlying multinomial probability model determines the dependence
structure among the observations. We have shown that the comparison between
the sensitivity of the two competing test (e.g., Proposition 3.1) depends essentially
on assessing the symmetry of the joint distribution of the two competing tests
when the condition is present (D = 1). This is the usual condition (marginal
homogeneity) found when assessing dependent proportions. The classical large-
sample solution is McNemar’s test to assess the sharp hypothesis equivalent to
N, =1, [e.g., AGRESTI (1990, p. 348)]. The same comment applies to the compar-
ison of the specificity parameters of the two tests. A lower probability bound for
the relative assessment of the corresponding predictive values is the product of the
two posterior probabilities for the sensitivity and specificity parameters (Proposi-
tion 3.2). The clinical usefulness of a screening test is determined by its proper
region R. When R, C R; we say that tests 77 and 7, are comparable and that 7 is
uniformly more useful than 7,. We argued that a sufficient condition for R, C R
under positive dependence (1), + 0, > 1) of Test 2 is n; > 1,, 0; > 0,. The statis-
tical assessment of the condition is provided by Proposition 3.1, which also pro-
vides for a lower probability bound for the relative screening usefulness.

Appendix A

When the probability density function of U is Beta with parameters o, o and the
density of V is Beta with parameters B3, §’, independent of U, then

PU<V)= moﬁij (;”“/*‘) BB +ja+d +p —j—1), (A1)

where B(c,c’) =T'(¢) I'(¢)/T'(c + ¢’) for non-negative real numbers ¢ and ¢’.
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