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Abstract 
A tractable nonparametric prior over densities is introduced which is closed under sampling and 
exhibits proper posterior asymptotics. 
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1. Introduction 
The early 1970’s witnessed Bayesian inference going nonparametric with the introduction of statistical models 
with infinite dimensional parameter spaces. The most conspicuous of these models is the Dirichlet process [1], 
which is a prior on the class of all probability measures over a given sample space that trades great analytical 
tractability for a reduced support: as shown by Blackwell [2], its realizations are, almost surely, discrete proba-
bility measures. The posterior expectation of a Dirichlet process is a probability measure that gives positive mass to 
each observed value in the sample, making the plain Dirichlet process unsuitable to handle inferential problems 
such as density estimation. Many extensions and alternatives to the Dirichlet process have been proposed [3]. 

In this paper we construct a prior distribution over the class of densities with respect to Lebesgue measure. 
Given a partition in subintervals of a bounded interval of the real line, we define a random density whose reali-
zations have a constant value on each subinterval of the partition. The distribution of the values of the random 
density on each subinterval is specified by transforming and conditioning a multivariate normal distribution. 

Our simple random density is the finite dimensional analogue of the stochastic processes introduced by 
Thorburn [4] and Lenk [5]. Computations with these stochastic processes involve an intractable normalization 
constant, and are restricted to values of the random density on a finite number of arbitrarily chosen domain 
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points, demanding some kind of interpolation of the results. The finite dimensionality of our random density 
makes our computations more direct and transparent and gives us simpler statements and proofs. 

An outline of the paper is as follows. In Section 2, we give the formal definition of a simple random density. 
In Section 3, we prove that the distribution of a simple random density is closed under sampling. The results of 
the simulations in Section 4 depict the asymptotic behavior of the posterior distribution. We extend the model 
hierarchically in Section 5 to deal with random partitions. Although the usual Bayes estimate of a simple ran-
dom density is a discontinuous density, in Section 6 we compute smooth estimates solving a decision problem in 
which the states of nature are realizations of the simple random density and the actions are smooth densities of a 
suitable class. Additional propositions and proofs of all the results in the paper are given in Section 7. 

2. Simple Random Densities 
Let ( ), , PΩ F  be the probability space from which we induce the distributions of all random objects consi-
dered in the paper. For some integer 1k ≥ , let k

+  be the subset of vectors of k
  with positive components. 

Write kR  for the Borel sigma-field of k
 . Let kλ  denote Lebesgue measure over ( ),k k R . We omit the 

indexes when 1k = . The components of a vector kv∈  are written as 1, , kv v . 
Suppose that we have been given an interval [ ],a b ⊂  , and a set of real numbers { }0 1, , , kt t t∆ =  , such 

that 0 1 ka t t t b= < < < = , inducing a partition of [ ],a b  into the 1≥k  subintervals  

[ ) [ ) [ ) [ ]1 1 2 2 1 1, , , , , , , , .k k ka t t t t t t b− − −  

The class of simple densities with respect to this partition consists of the nonnegative simple functions which 
have a constant value on each subinterval and integrate to one. Let 1i i id t t −= − , for 1, ,i k=  , and define the 
map : kS∆ →  by ( ) 1

k
i iiS u d u∆ =

= ∑ . Each simple density :f →   within this class can be represented 
as  

( ) [ ) ( )
1,

1
,

i i

k

i t t
i

f x h I x
−

=

= ∑  

in which ( )1, , k
kh h h= ∈   is such that each 0ih ≥ , and ( ) 1S h∆ = . The ih ’s are the heights of the steps 

of the simple density f. 
From now on, let { }1 1:k

r k kv d v d v r+= ∈ + + =  , for r∈ . Note that, by the definition of the id ’s 
given above, it follows that r = ∅  if 0r ≤ . Moreover, define the projection on the first 1−k  coordinates 

1: k kπ −→   by ( ) ( )1 1 1 1, , , , ,k k kv v v v vπ − −=  . For a normal random vector ( )1, , kZ Z Z=   with mean 
km∈  and kk ×  covariance matrix Σ , denote by ( ),kU L m Σ  the distribution of the lognormal random 

vector ( )1e , , e kZZU =  . If Σ  is nonsingular, it is easy to show that U has a density  

( ) ( ) ( ) ( ) ( )1 22 1 1

1

12 exp log log ,
2 k

k
k

U i
i

f u u u m u m I uπ
+

−− Τ− −

=

   = Σ × − − Σ −     
∏



 

in which Σ  is the determinant of Σ , and we have introduced the notations ( )1log log , , log ku u u Τ=   and 
( )1, , km m m Τ=  . 

We define a random density whose realizations are simple densities with respect to the partition induced by 
∆  specifying the distribution of the random vector of its steps heights. Informally, the steps heights will have 
the distribution of a lognormal random vector U given that ( ) 1S U∆ = . The formal definition of the random 
density is given in terms of a version of the conditional distribution of U given ( )S U∆  and the expression of 
its conditional density with respect to a dominating measure. However, we are outside the elementary case in 
which the joint distribution is dominated by a product measure. In fact, we have in Proposition 7.1 a simple 
proof that Lebesgue measure 1kλ +  and the joint distribution of U and ( )S U∆  are mutually singular. 

A suitable family of measures that dominate the conditional distribution of U given ( )S U∆ , for each value 
of ( )S U∆ , is described in the following lemma. 

Lemma 2.1. Let : k
rτ → R  be defined by ( ) ( )( )1

1r k k rA d Aτ λ π−
−=  , for r∈ . Then, each rτ  is 

a measure over ( ),k k R .  
The proof of Lemma 2.1 is given in Section 7. Figure 1 gives a simple geometric interpretation of the meas-

ures rτ  when the underlying partition is formed by three subintervals. 
The following result is the basis for the formal definition of the random density. 
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Figure 1. Geometrical interpretation of the measures rτ  of 
Lemma 2.1, for 0r > , in the particular case when 3k = . 
The value of ( )r Aτ  is the area of the projection ( )rAπ   

multiplied by 1
3d − . 

 
Theorem 2.2. Let ( ),kU L m Σ , with nonsingular Σ , and let { }r rτ

∈  be the family of measures over 
( ),k k R  defined on Lemma 2.1. Then, we have that ( )| : k

U S Uµ
∆ +× → R  defined by  

( ) ( ) ( )
( ) ( ) ( ) ( )| d ,

r

U
rU S U A

S U

f u
A r I u u

f r
µ τ

∆

∆

= ∫   

is a regular version of the conditional distribution of U  given ( )S U∆ , in which  

( ) ( ) ( ) ( ) ( )d .k rU rS Uf r f u I u uτ
∆

= ∫ 
 

Moreover, ( ) ( )| 1rU S U rµ
∆

= , for each 0r > .  
The necessary lemmata and the proof of Theorem 2.2 are given in Section 7. The following definition of the 

random density uses the specific version of the conditional distribution constructed in Theorem 2.2. 
Definition 2.3. Let ( ),kU L m Σ , with nonsingular Σ . We say that the map :ϕ ×Ω→   defined by  

( ) ( ) [ ) ( )
1,

1
,

i i

k

i t t
i

x H I xϕ ω ω
−

=

= ∑  

is a simple random density, in which ( )1, , kH H H=   are the random heights of the steps of ϕ , with distri-
bution given by ( ) ( ) ( )| 1H U S UA Aµ µ

∆
= , for kA∈R , and ( )|U S Uµ

∆
 is the regular version of the conditional 

distribution of U given ( )S U∆  obtained in Theorem 2.2. Hence, for every kA∈R , we have  

( ) ( )
( ) ( )

( ) ( )
1 1d ,

1
U

H A
S U

f h
A I h h

f
µ τ

∆

= ∫   

in which ( ) ( )( )1
1 1 1k kA d Aτ λ π−

−=   and it holds that ( )1 1Hµ = . We use the notation ( ),mϕ ∆ Σ .  

3. Conditional Model 
Now, we model a set of absolutely continuous observables conditionally, given the value of a simple random 
density ϕ . The following lemma, proved in Section 7, describes the conditional model and determines the form 
of the likelihood. 

Lemma 3.1. Consider ( ),mϕ ∆ Σ  represented as  
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( ) ( ) [ ) ( )
1,

1
, ,

i i

k

i t t
i

x H I xϕ ω ω
−

=

= ∑  

and let the random variables 1, , nX X  be conditionally independent and identically distributed, given that 
H h= , with distribution  

( ) ( ) ( )
1| d ,X H A

A h f y yµ λ= ∫  

in which we have defined ( ) [ ) ( )
1,1 i i

k
i t tif y h I y

−=
= ∑ . Define ( )1, , nX X X=   and let ( )1, , n

nx x x= ∈  .  

Then, ( )|X H nhµ λ⋅  , almost surely [ ]Hµ , with Radon-Nikodym derivative  

( ) ( )|
|

1

d
,

d
i

k
X H c

X H i
in

x h f x h h
µ
λ =

= =∏  

in which [ ) ( )
1 ,1 i i

n
i jt tjc I x

−=
= ∑ , for 1, ,i k=  .  

The factorization criterion implies that ( )1, , nc c c=   is a sufficient statistic for ϕ . That is, in this condi-
tional model, as one should expect, all the sample information is contained in the countings of how many sample 
points belong to each subinterval of the partition induced by ∆ . 

Using the notation of Lemma 3.1, and defining ( )1, , kc c c Τ=  , we can prove that the prior distribution of 
ϕ  is closed under sampling. 

Theorem 3.2. If ( ),mϕ ∆ Σ , then ( )*| ,X x mϕ = ∆ Σ
, in which *m m c= + Σ .  

This result, proved in Section 7, makes the simulations of the prior and posterior distributions essentially the 
same, the only difference being the computation of *m . 

4. Stochastic Simulations 
We summarize the distribution of a simple random density ( ),mϕ ∆ Σ , represented as  
( ) ( ) [ ) ( )

1,1,
i i

k
i t tix H I xϕ ω ω

−=
= ∑ , in two ways. First, motivated by the fact, proved in Proposition 7.5, that the 

prior and posterior expectations are predictive densities, we take as an estimate the expectation of the steps 
heights [ ] [ ]( )1

ˆ E , ,E kh H H= 
. Second, the uncertainty of this estimate is assessed defining  

( ) { }1 1
ˆ ˆ, : max ,i ii k

B h h h h
≤ ≤

= ∈ − <   

for 0> , and taking as a credible set the ( )ˆ,B h   with the smallest   such that ( ) ( ){ }ˆ: ,P H B hω ω γ∈ = , 
in which ( )0,1γ ∈  is the credibility level. 

The Random Walk Metropolis algorithm [6] is used to draw dependent realizations of the steps of ϕ  as  
values of a Markov chain ( ){ }

0

i

i
H

≥
. The two summaries are computed through ergodic means of this chain. For  

example, the credible set is determined with the help of the almost sure convergence of  

( )
( )( ) ( ) ( ) ( ) ( ){ }ˆ ˆ, ,

0

1 ˆE : , .
N

i
NB h B h

i
I H I H P H B h

N
ω ω→∞

=

 → = ∈  ∑  
  

As for the parameters appearing in Definition 2.3, we take in our experiments all the im ’s equal to one, and 
the covariance matrix ( )ijσΣ =  is chosen in the following way. Given some positive definite covariance func-
tion :C × →   , we induce Σ  from C defining  

11 , ,
2 2

j ji i
ij

t tt t
Cσ −−

+ +
=  

 
 

for , 1, ,i j k=  . In our examples we study the family of Gaussian covariance functions defined by  
( ) ( )2

, , e x yC x y θ
ρ θ ρ − −= , with dispersion parameter 0ρ >  and scale parameter 0θ > . 
Example 4.1. Let ( ),mϕ ∆ Σ  and consider the sample space [ ]0,1  with { }0,0.01,0.02, ,0.98,0.99,1∆ =  . 

For the sake of generality, we induce Σ  from the family of Gaussian covariance functions with fixed disper-
sion parameter 0ρ  but with random scale parameter 20000YΘ = + , in which ( )Gamma 2,0.001Y  . These 
choices guarantee that computations with Σ  are numerically stable. In Figure 2, the summaries of the prior 
distribution of ϕ  show that the value of 0ρ  controls the concentration of the prior. Fixing 0 0.05ρ =  and 
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generating data from the mixture  

( ) ( ) ( )1 1 1Beta 1,10 Beta 10,10 Beta 30,5 ,
3 3 3
⋅ + ⋅ + ⋅  

we have in Figure 3 the posterior summaries for different sample sizes. Note the concentration of the posterior 
as we increase the size of the samples.  

 

 
Figure 2. Effect of the value of ρ0 on the concentration of the prior. The curves in 
black are prior expectations and the gray regions are credible sets with credibility 
level of 95%. 

 

 
Figure 3. Posterior summaries for Example 4.1. On each graph, the black simple 
density is the estimate ϕ̂ , the light gray region is a credible set with credibility 
level of 95%, and the dark gray curve is the data generating density. 
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We observe the same asymptotic behavior of the posterior distribution with data coming from a triangular 
distribution and a mixture of normals (with appropriate truncation of the sample space). 

5. Random Partitions 
Inferentially, we have a richer construction when the definition of the simple random density involves a random 
partition. Informally, we want a model for the random density in which the underlying partition adapts itself ac-
cording to the information contained in the data. 

We consider a family of uniform partitions of a given interval [ ],a b . Each partition of this family will be 
described by a positive integer random variable K, which determines the number of subintervals in the partition. 
Since the parameter ρ  of the family of Gaussian covariance functions used to induce Σ  may have different 
meanings for different partitions, we treat it as a positive random variable R. 

Explicitly, we are considering the following hierarchical model: K and R are independent. Given that K k=  
and R ρ= , we choose the uniform partition of the interval [ ],a b  induced by  

( ) ( )( )2 1
, , , , , ,

b a k b ab aa a a a b
k k k

− − − − ∆ = + + + 
  

  

induce ,ρ θΣ  from the family of Gaussian covariance functions, and take the simple random density  
( ),,m ρ θϕ ∆ Σ

. Finally, the observables are modeled as in Lemma 3.1. This hierarchy is summarized in the 
following graph.  
 

 
 

In the following example, instead of specifying priors for K and R, we define the likelihood of K and R by 
( ) ( )| ,, ,x X K RL k f x kρ ρ= , whose form is obtained in Proposition 7.6, find the maximum  

( ) ( ),
ˆ ˆ, arg max ,k xk L kρρ ρ= , and use these values in the definitions of the prior, determining the posterior sum-

maries as we did in Section 4. 
Example 5.1. With a sample of size 2000 generated from a ( )Beta 4,2  distribution, we find the maximum 

of the likelihood of K and R at ( ) ( )ˆ ˆ, 9,1.43k ρ = . In Figure 4 we have the posterior summaries obtained using 
these values in the definition of the prior. Moreover, in the left graph of Figure 5 we have the distribution func-
tion F̂  corresponding to the estimated posterior density. For the sake of comparison, we plot in the right graph 
of Figure 5 some quantiles of this distribution F̂  against the quantiles of the distribution 0F  from which we 
generated the data.  

6. Smooth Estimates 
It is possible to go beyond the discontinuous densities obtained as estimates in the last two sections and get 
smooth estimates of a simple random density ϕ  solving a Bayesian decision problem in which the states of 
nature are the realizations of ϕ  and the actions are smooth densities of a suitable class. 

In view of Theorem 3.2, it is enough to consider the problem without data. As before, the sample space is the 
interval [ ],a b , which is partitioned according to some ∆ . For a density f with respect to Lebesgue measure, we  

denote its 2L  norm by ( )1 22
2 df f λ= ∫ . 

Proposition 6.1. For 1N ≥ , let 1, , Ng g  be densities with respect to Lebesgue measure, with support 
[ ],a b , such that 

2ig < ∞ , and let D  be the class of densities of the form 
1

N
i ii gα

=∑ , with 0iα ≥ , for  
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Figure 4. Posterior summaries for Example 5.1. The black simple density is the estimate ϕ̂ , the 
light gray region is a credible set with credibility 95%, and the dark gray curve is the data generating 
density. 

 

 

Figure 5. Example 5.1. On the left graph, the black curve is the estimated distribution function F̂  
and the gray curve is the data generating distribution function F0. On the right graph, we have the 
comparison of some of the quantiles of F̂  and F0. 

 
1, ,i N=  , and 

1 1N
ii α= =∑ . Let ( ),mϕ ∆ Σ  and define S  as the class of densities which are realizations 

of ϕ . Define the loss function :L × → S D  by  

( ) ( ) ( )( ) ( )22

2, d .
b

a
L s f s f s x f x xλ= − = −∫  

Then, the Bayes decision is 
1

ˆ ˆN
i ii gϕ α

=
= ∑ , in which ˆiα  minimize globally the quadratic form  

, 1 1
,

N N

i j ij i i
i j i

Q M Jα α α
= =

= −∑ ∑  

subject to the constraints 0iα ≥ , for 1, ,i N=  , and 1 1N
ii α

=
=∑ , with the definitions 

( ) ( ) ( )d ,
b

ij i ja
M g x g x xλ= ∫  

( ) ( ) ( )2 E d .
b

i ia
J g x x xϕ λ=   ∫  

We use the result of Proposition 6.1, proved in Section 7, choosing the ig ’s inside a class of smooth densities 
that serve approximately as a basis to represent any continuous density with the specified support. 

For the next example, suppose that the support of the densities is the interval [ ]0,1 . Bernstein’s Theorem (see 
[7], Theorem 6.2) states that the polynomial  

( ) ( )
0

1
N N ii

N
i

NiB x f x x
iN

−

=

  = −  
  

∑  

approximates uniformly any continuous function f defined on [ ]0,1 , when N →∞ . Suppose that f is a density. 



Marques, C. Pereira 
 

 
384 

If we define, for 0, ,i N=  ,  

( ) ( )
( )

1 1
,

2i

i N iNif
iN N

α
Γ + Γ − +  =    Γ +  

 

we can rewrite the approximating polynomial as ( ) ( )0
N

N i iiB x g xα
=

=∑ , in which ig  is a density of a  
( )Beta 1, 1i N i+ − +  random variable. Hence, if we take a sufficiently large N, we expect that any continuous 

density with support [ ]0,1  will be reasonably approximated by a mixture of these ig ’s. 
Example 6.2. Suppose that we have a sample of 5000 data points simulated from a truncated exponential 

distribution, whose density is  

( )
( )

[ ] ( )
2 1

0 0,12

2e .
e 1

x

f x I x
− −

=
−

 

Repeating the analysis made in Example 5.1, we find the maximum of the likelihood of K and R at  
( ) ( )ˆ ˆ, 9,0.86k ρ = . The left graph of Figure 6 presents the posterior summaries. After that, we solved the prob-
lem of constrained optimization in Proposition 6.1 and found the results shown in the right graph of Figure 6.  

7. Additional Results and Proofs 
In this section we present some subsidiary propositions and give proofs to all the results stated in the paper. 

Proposition 7.1. Let ( ),kU L m Σ  and denote by ( ),U S Uµ
∆

 the joint distribution of U  and ( )S U∆ . Then, 
( ) 1, kU S Uµ λ

∆ +⊥ .  

Proof. Define the set { }1 1
11: kk k

i i kiA v d v v+ +
+=

= ∈ = ∈∑ R . Then,  

( ) ( ) ( ) ( )( )( ){ } ( ) ( )( ),
1

: , : 1,
k

i iU S U
i

A P U S U A P d U S Uµ ω ω ω ω ω ω
∆ ∆ ∆

=

 = ∈ = = = 
 

∑  

by definition of S∆ . On the other hand, note that ( )1 0k Aλ + = , since this is the ( )1k + -volume of the k-di-  
mensional hyperplane defined by the set A. Since ( ) ( ), 0c

U S U Aµ
∆

= , the result follows.  

Proof of Lemma 2.1. When 0r ≤ , the result is trivial, since in this case r =∅ , making rτ  a null measure. 
Suppose that 0r >  and let : k kg →   be the function defined by  

( )
1

1 1
1

1, , , .
k

k k i i
ik

g v v v v d v
d

−

−
=

  = −  
  

∑  

Define 1: k k
rh − →   by ( ) ( ),rh y g y r= . We will show that ( ) ( )1

r rA h Aπ −= , for every A∈R . 
Suppose that ( )ry Aπ∈  . Then, there is a rv A∈   such that ( ) ( )1 1, , ky v v vπ −= =   and  

( ) ( )
1

1 1
1

1, , , , .
k

r k i i
ik

h y g y r v v r d v
d

−

−
=

  = = −  
  

∑  

 

 
Figure 6. Example 6.2. On the right graph, the black simple density is the estimate ϕ̂ , 
and the light gray region is a credible set with credibility 95%. On both graphs the dark 
gray curve is the data generating density. On the left graph, the black smooth density is 
the Bayes decision of Proposition 6.1. 
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Since rv∈ , we have that ( )1
1

1 k
i i ki

k

r d v v
d

−

=
− =∑ , implying that ( )rh y v= . Since v A∈ , it follows from  

the definition of the inverse image of rh  that ( )1
ry h A−∈  and, therefore, we conclude that  

( ) ( )1
r rA h Aπ −⊂ . To prove the other inclusion, suppose that ( )1

ry h A−∈  and define ( )rv h y= . Hence, 
v A∈  and by the definition of rh  we have that  

( )
1

1 1
1

1, , , , ,
k

k i i
ik

v g y r y y r d y
d

−

−
=

  = = −  
  

∑  

implying that rv∈ , because 
1

k
i ii d v r

=
=∑ . Since rv A∈   and ( )y vπ= , it follows that  

( )ry Aπ∈  . Therefore, ( ) ( )1
r rh A Aπ− ⊂  . Hence, we have that 1 1

r k k rd hτ λ− −=   and the properties of 
the inverse image of rh  and the Lebesgue measure entail that each rτ  is a measure over ( ),k k R .  

Lemma 7.2. Let ( ),kU L m Σ . Let ξ , defined by  

( ) ( )( ){ }: , ,k
kA u u S u Aξ λ + ∆= ∈ ∈  

be a measure over ( )1 1,k k+ + R . Denote by ( ),U S Uµ
∆

 the joint distribution of U  and ( )S U∆ . Then, we have 
that ( ),U S Uµ ξ

∆


, with Radon-Nikodym derivative ( ) ( ), ,d dU S U U S Ufµ ξ
∆ ∆

=  given by  

( ) ( ) ( ) ( ), , ,
rUU S Uf u r f u I u

∆
=   

in which ku∈  and r∈ .  
Proof. Define the function 1: k kT +

+ →   by ( ) ( )( ),T u u S u∆= . Note that 1
k Tξ λ −=  . Define the func-

tion 1: kψ + →   by ( ) ( ) ( ),
rUu r f u I uψ =  , with ku∈  and r∈ . The diagram  

 

 
 
commutes, since ( )( ) ( )( ) ( )

( )
( ) ( ),

S UU UT u u S u f u I u f uψ ψ
∆

∆= = = , for every ku +∈ . For every 1kA +∈R , 
we have that  

( ) ( ) ( ) ( )( )( ){ } ( ) ( ){ }
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

1
, : , :

d d

, d , d , ,
r

U S U

U k kT A T A

UA A

A P U S U A P U T A

f u u T u u

u r u r f u I u u r

µ ω ω ω ω ω

λ ψ λ

ψ ξ ξ

∆

− −

−
∆= ∈ = ∈

= =

= =

∫ ∫

∫ ∫ 

 

in which the fifth equality is obtained transforming by T, ku∈  and r∈ . It follows that ( ),U S Uµ ξ
∆

 , 
and the Radon-Nikodym derivative has the desired expression.  

Lemma 7.3. Let ξ  be the measure defined on Lemma 7.2 and let { }r rτ
∈  be the family of measures 

defined on Lemma 2.1. Then, for every measurable nonnegative 1: kψ + →  , we have that  

( ) ( ) ( ) ( )( ) ( )1 , d , , d d ,k k ru r u r u r u rψ ξ ψ τ λ+ =∫ ∫ ∫  
 

in which ku∈  and r∈ .  
Proof. Define : k kf →   by ( ) ( )1 1 1, , , k

k i iif u u u d u− =
= ∑ . Hence, f is a differentiable function whose 

inverse is the differentiable function g defined on Lemma 2.1. The value of the Jacobian on the point kv∈  is 
( ) 1

g kJ v d −= . Let kA∈R , 1ky −∈ , r∈ , and define rh  as in Lemma 2.1. When 0r > , we have already 
shown in the course of the proof of Lemma 2.1 that ( ) ( )1

r rA h Aπ −= , for every kA∈R . Remembering  
that, by definition, k

r +⊂  , it follows that ( ) ( )1 k
r rA h Aπ −

+=    and we conclude that ( ) ( )
rAI yπ =

   

( )( ),kA
I g y r

+
. Now suppose that 0r ≤ . In this case, since r =∅ , we have that ( ) ( ) ( ) 0

rAI y I yπ ∅= =
 . 

As for the value of ( )( ),kA
I g y r

+
, consider two subcases: since  
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( )
1

1 1
1

1, , , , ,
k

k i i
ik

g y r y y r d y
d

−

−
=

  = −  
  

∑  

if any of the 0iy ≤ , then ( )( ), 0kA
I g y r

+
=


, otherwise, we have  

1

1

1 0,
k

i i
ik

r d y
d

−

=

 − < 
 

∑  

and again it happens that ( )( ), 0kA
I g y r

+
=


. Therefore, we conclude that in this case also  

( ) ( ) ( )( ),krA A
I y I g y rπ +

=




 
. Hence, for kA∈R  and B∈R , we have that  

( ) ( ){ }
( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1

1
1

: ,

d

, , d ,

d ,

d d d ,

kk

kk

k r

r

k
k

B kA

B g kA

k B kA

k k rB A B

A B u u A S u B

I u I S u u

I g y r I r J y r y r

d I y I r y r

d y r A r

π

π

ξ λ

λ

λ

λ

λ λ τ λ

+

+

+ ∆

∆

−

−
−

× = ∈ ∈ ∈

=

=

=

= =

∫
∫
∫

∫ ∫ ∫



















 

in which 1ky −∈  and r∈ , the third equality is obtained transforming by f, and the penultimate equality is 
a consequence of Tonelli’s Theorem. The result follows from the Product Measure Theorem and Fubini’s 
Theorem (see [8], Theorems 2.6.2 and 2.6.4).  

Lemma 7.4. Let ( ),kU L m Σ . Let { }r rτ
∈  be the family of measures defined on Lemma 2.1. Let ( )S Uµ

∆
 

be the distribution of ( )S U∆ . Then, ( )S Uµ λ
∆

  with Radon-Nikodym derivative ( ) ( )d dS U S Ufµ λ
∆ ∆

=  given 
by  

( ) ( ) ( ) ( ) ( )d .k rU rS Uf r f u I u uτ
∆

= ∫ 
 

Proof. Let A∈R , ku∈ , and r∈ . Let ξ  be the measure defined on Lemma 7.2. We have that  

( ) ( ) ( )( ){ } ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
,

: : ,

d ,

d ( ) d ,

k r

k r

k
S U

k
UU S U A

U rA

A P S U A P U S U A

A f u I u u r

f u I u u r

µ ω ω ω ω ω

µ ξ

τ λ

∆

∆

∆ ∆

×

= ∈ = ∈ ∈

= × =

=

∫
∫ ∫







  

in which the penultimate equality follows from Lemma 7.2, and the last equality follows from Lemma 7.3. 
Hence, ( )S Uµ λ

∆
  and the Radon-Nikodym derivative has the desired expression.  

Proof of Theorem 2.2. Let ( ),U S Uµ
∆

 be the joint distribution of U  and ( )S U∆ , and let ( )S Uµ
∆

 be the 
distribution of ( )S U∆ . For kA∈R  and B∈R , by the definition of conditional distribution, we have that  

( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, |

|

, d

d
d ,

d

U S U U S U S UB

S U
U S UB

A B P U A S U B A r r

A r r r

µ µ µ

µ
µ λ

λ

∆ ∆ ∆

∆

∆

∆× = ∈ ∈ =

=

∫

∫
 

in which we have used the Leibniz rule for the Radon-Nikodym derivatives. On the other hand, by Lemmas 7.2 
and 7.3, we have that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ), d , d d ,
r rU U rU S U A B B A

A B f u I u u r f u I u u rµ ξ τ λ
∆ ×

× = =∫ ∫ ∫   

with ku∈  and r∈ . Both expressions for ( ) ( ),U S U A Bµ
∆

×  are compatible if  

( ) ( ) ( ) ( ) ( )
( ) ( )|

d
,rU rA

U S U
S U

f u I u u
A r

f r
τ

µ
∆

∆

= ∫   
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for almost every r [ ]λ . Therefore, we have that ( ) ( )| rU S U rµ τ
∆

⋅  , for almost every 0r >  [ ]λ , with Radon- 
Nikodym derivative ( ) ( ) ( )| |d d rU S U U S Uf rµ τ

∆ ∆
= ⋅  given by  

( ) ( ) ( )
( ) ( ) ( )| ,

r

U
U S U

S U

f u
f u r I u

f r∆

∆

=   

as desired. The fact that ( ) ( )| 1rU S U rµ
∆

=  follows immediately.                                  ■  

Proof of Lemma 3.1. Let hα  be the measures over ( ),n n R  defined by ( ) ( ) ( )1 dik c
h i niA

A h xα λ
=

= ∏∫ , for  

each 1h∈ . Let 1 nB B B= × × , with iB ∈R , for 1, ,i n=  . By the hypothesis of conditional indepen-
dence and Tonelli’s Theorem, we have that  

( ) ( ) ( ) ( )

( ) ( ) [ ) ( ) ( )

( ) ( )

1

| |
1 1

,
11 1

1

d

d d

d .

j j

i i

i

n n

X H X H j j jB
j j

n n k

j n i j nt tB B
ij j

k
c
i n hB

i

B h B h f x x

f x x h I x x

h x B

µ µ λ

λ λ

λ α

−

= =

== =

=

= =

   
= =   

   
 = = 
 

∏ ∏∫

∑∏ ∏∫ ∫

∏∫

 

Hence, ( )|X H hµ ⋅  and hα  agree on the π -system of product sets that generate nR . Therefore, by Theo-
rem A.26 of [9], both measures agree on the whole sigma-field nR . It follows that ( )|X H nhµ λ⋅  , almost 
surely [ ]Hµ , and the Radon-Nikodym derivative has the desired expression.                          ■  

Proof of Theorem 3.2. By Bayes Theorem, for each kA∈R , we have that  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

1

| 0 | 0
1

0 1
1 1

0
1

1

d d

d d
d

d ,
1

i

i

i

k
c

H X X H H i HA A
i

k
c H
iA

i

k
c
i UA

iS U

A x C f x h h C h h

C h h h

C h f h I h h
f

µ µ µ

µ τ
τ

τ
∆

=

=

=

 = =  
 

 =  
 

 =  
 

∏∫ ∫

∏∫

∏∫ 

 

in which we have used the expression of the likelihood obtained in Lemma 3.1, the Leibniz rule for the Ra-
don-Nikodym derivatives, the expression of 1d dHµ τ  in Definition 2.3, and the constant 0C  is such that 

( )| 1 1H X xµ = . The remainder of the proof relies on some matrix algebra. Let I be the identity matrix. Since,  

by definition, Σ  is symmetric , we have that ( ) ( ) ( )1 1 1I I
Τ Τ ΤΤ − − Τ −= = ΣΣ = Σ Σ = Σ Σ . Therefore, we have that  

( )1 1Τ− −Σ = Σ . Write logl h= . Since the scalar 1l mΤ −Σ  is equal to its transpose ( )1 1l m m l
ΤΤ − Τ −Σ = Σ , we have 

that  

( ) ( )1 1 1 12 .l m l m l l m l m mΤ − Τ − Τ − Τ −− Σ − = Σ − Σ + Σ  

Defining d c= Σ , we have  

( ) ( )

( )

( )

* 1 *

1

1 1 1 1

1 1 1 1 1 1
1

1exp
2

1exp 2 2
2

1exp 2 2 2 ,
2

i
k

c
i

i
h l m l m

d l l l m l m m

C d l l l m l m m m d d d

Τ −

=

Τ − Τ − Τ − Τ −

Τ − Τ − Τ − Τ − Τ − Τ −

   − − Σ −     
 = − − Σ + Σ − Σ + Σ 
 
 = − − Σ + Σ − Σ + Σ + Σ + Σ 
 

∏

 

with ( )( )( )1 1
1 exp 1 2 2C m d d dΤ − Τ −= − − Σ − Σ . Define *m m d= + . Since the scalar  

( )1 1 1d m d m m d
ΤΤ − Τ − Τ −Σ = Σ = Σ , we have that ( )* 1 * 1 1 12m m m m m d d d

Τ − Τ − Τ − Τ −Σ = Σ + Σ + Σ . Hence, we obtain  
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( ) ( )

( ) ( )( )
( ) ( )

* 1 *

1

1 * 1 * 1 *
1

* 1 *
1

1exp
2

1exp 2
2
1exp .
2

i
k

c
i

i
h l m l m

C l l m l m m

C l m l m

Τ −

=

Τ ΤΤ − − −

Τ −

   − − Σ −     
 = − Σ − Σ + Σ 
 
 = − − Σ − 
 

∏

 

Using this result in the expression of |H Xµ  together with the expression of Uf , we have  

( ) ( ) ( ) ( )* 1| 2 1d ,H X UA
A x C f h I h hµ τ= ∫   

in which ( ) ( ) ( )2 0 1 1S UC C C f
∆

=  and *U
f  is a density of the random vector ( ),kU L m∗ ∗ Σ . We conclude 

that, given that X x= , the vector H has the distribution of the heights of the steps of ( ),mϕ∗ ∗∆ Σ , as de-
sired.  

Proposition 7.5. Suppose that the random variables 1 1, , nX X +  are modeled according to Lemma 3.1. De-
note by 

iXµ  the distribution of iX , for 1, , 1i n= + . For convenience, use the notations ( ) ( )1, ,n
nX X X=   

and ( ) ( )1, ,n k
nx x x= ∈  . Then, for every A∈R , we have 

1) ( ) ( ) ( )E d
iX A

A y yµ ϕ λ=   ∫ , for 1, , 1i n= + ; 

2) ( )
( )( ) ( ) ( ) ( ) ( )

1|
E dn

n

n n n

AX X
A x y X x yµ ϕ λ

+

 = = ∫ , a.s. ( )nX
µ 
  .  

Proof. By Definition 2.3, we have  

( ) [ ) ( ) ( ) ( )
1,

1
E E d ,ki i

k

i Ht t
i

y H I y f y hϕ µ
−

=

 = =     
∑ ∫  

in which kh∈  and ( ) [ ) ( )
1,1 i i

k
i t tif y h I y

−=
= ∑ , for y∈ . In an analogous manner, we have  

( ) ( ) ( ) ( ) ( )
( )( )|

E d .nk
n n n

H X
y X x f y h xϕ µ = =  ∫  

For item 1), note that  

( ) { } ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

|, d

d d d d

E d ,

ki i

k k

k
X i X H H

H HA A

A

A P X A H A h h

f y y h f y h y

y y

µ µ µ

λ µ µ λ

ϕ λ

= ∈ ∈ =

= =

=   

∫
∫ ∫ ∫ ∫
∫



 



 

in which the fourth equality follows from Tonelli’s Theorem. For item 2), for each nB∈R , we have  
( ){ } ( )

( )( ) ( )
( )( )

1
1 |

, d .n n
n

n n n
n B X X X

P X A X B A x xµ µ
+

+ ∈ ∈ = ∫  

On the other hand, we have  
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in which the third equality follows from the hypothesis of conditional independence and Theorem B.61 of [9], 
the fourth equality is a consequence of Theorem 2.6.4 of [8], and the sixth equality is due to Tonelli’s Theorem. 
Comparing both expressions for ( ){ }1 , n

nP X A X B+ ∈ ∈ , we get the desired result.  
Proposition 7.6. Let 1

K P Kµ −=   over ( ), 2  be the distribution of K and let 1
R P Rµ −=   over ( ), R  

be the distribution of R. Denote by ,K Rµ  the joint distribution of K and R, which by the independence of K and 
R is equal to the product measure K Rµ µ× , and let , ,K R Hµ  be the joint distribution of K, R and H. In the hie-
rarchical model described in Section 5, we have that ( )| , ,X K R nkµ ρ λ⋅  , almost surely ,K Rµ   , with Ra-
don-Nikodym derivative  

( ) ( ) ( ) ( )| ,
| , | | ,

d
, , d , ,

d k
X K R

X K R X H H K R
n

x k f x k f x h h k
µ

ρ ρ µ ρ
λ

= = ∫  

for the |X Hf  defined on Lemma 3.1.  
Proof. Let nA∈R  and 2B∈ ⊗ R . By the definition of conditional distribution, we have  

( ){ } ( ) ( )| , ,, , , d , .X K R K RB
P X A K R B A k kµ ρ µ ρ∈ ∈ = ∫  

On the other hand, by arguments similar to those used in the proof of Proposition 7.5, we have  
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∫
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Comparing both expressions for ( ){ }, ,P X A K R B∈ ∈ , we have  

( ) ( ) ( )( ) ( )| , | | ,, d , d ,kX K R X H H K R nA
A k f x h h k xµ ρ µ ρ λ= ∫ ∫  

almost surely ,K Rµ   , and the result follows.                                                   ■  
Proof of Proposition 6.1. By Tonelli’s Theorem, the expected loss is  

( ) ( ) ( ) ( ) ( ) ( )2
0E , d 2 E d ,

b b

a a
L f f x x f x x x Cϕ λ ϕ λ= − +      ∫ ∫  

in which we have defined the positive constant ( ) ( )2
0 E d

b

a
C x xϕ λ =  ∫ . By hypothesis, each f  has the form 

( ) ( )1
N

i iif x g xα
=

=∑ , leading us to  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) 0
, 1 =1

E , d 2 E d ,
N Nb b

i j i j i ia a
i j i

L f g x g x x g x x x Cϕ α α λ α ϕ λ
=

= − +      ∑ ∑∫ ∫  

in which we have used the linearity of the integral. Therefore, minimizing the expected loss is the same as 
solving the problem of constrained minimization of the quadratic form Q. For the matrix ( )ijM M= , note that, 
for every non null ( )1, , N

Ny y y Τ= ∈  , we have  

( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

, 1 , 1

2

, 1 1

d

d d 0,

N N b
i j ij i j i ja

i j i j

N Nb b
i i j j i ia a

i j i

y My y y M y y g x g x x

y g x y g x x y g x x

λ

λ λ

Τ

= =

= =

= =

 = = > 
 

∑ ∑ ∫

∑ ∑∫ ∫
 

in which we have used the linearity of the integral. Therefore, the matrix M is positive definite, yielding (see 
[10]) that the quadratic form Q is convex and the problem of constrained minimization of Q has a single global 
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solution ( )1ˆ ˆ, , Nα α . Since the Bayes decision is the f that minimizes the expected loss, the result follows. 

8. Conclusion 
The random density considered in the paper can be extended to multivariate problems introducing analogous 
partitions of d-dimensional Euclidean space. Also, as an alternative to the empirical approach used in Section 5, 
we can specify full priors for the hyperparameters. Although more computationally challenging, this choice de-
fines a more flexible model with random dimension for which the density estimates are no longer simple densi-
ties. More general random partitions can also be considered. 
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